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EPIGRAPH

Where, then, should we look for a satisfactory theory of behavior? Intentional

theory is vacuous as psychology because it presupposes and does not explain

rationality or intelligence. The apparent successes of Skinnerian behaviorism,

however, rely on hidden Intentional predictions. Skinner is right in recognizing

that Intentionality can be no foundation for psychology, and right also to look for

purely mechanistic regularities in the activities of his subjects, but there is little

reason to suppose they will lie on the surface in gross behavior (except, as we

have seen, when we put an artificial straitjacket on an Intentional regularity).

Rather, we will find whatever mechanistic regularities there are in the functioning

of internal systems whose design approaches the optimal (relative to some ends).

In seeking knowledge of internal design our most promising tactic is to takeout

intelligence-loans, endow peripheral and internal events with content, and then

look for mechanisms that will function appropriately with such “messages” so we

can pay back the loans.

–Daniel Dennett, “Intentional Systems”, Journal of Philosophy 1971.
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ABSTRACT OF THE DISSERTATION

A Computational Approach to the Study of Social Interaction

by

Paul Lundy Ruvolo

Doctor of Philosophy in Computer Science

University of California, San Diego, 2012

Garrison W. Cottrell, Chair

For scientists, explanations of natural phenomenon based on optimality

principles are critical tools for understanding the phenomena that shape the so-

lutions the brain devises for the complex perceptual and motor problems of daily

life. The neuroscientist David Marr called this type of analysis the “computational

approach”. While the computational approach has been applied with a great deal

of success to phenomena such as neural coding and human motor control, the suc-

cess of the computational approach for studying interactive behavior, particularly

social behavior, has been more modest.

The purpose of this dissertation is threefold: to make the case for the

study of social interaction from the computational perspective; to understand the

challenges involved in this study and provide computational tools to address these

xvii



challenges; and to apply the computational approach to the study of social behavior

in the real world. Our principle contributions are: (1) developing a framework

for both analyzing and synthesizing behaviors in continuous state, action, and

time from the perspective of the intentions that these behaviors appear to be

realizing (our approach is well-suited for many motor-control and social-interaction

problems), and (2) carrying out two computational studies of early infant social

behavior that shed light on the computational forces that shape development. Our

empirical results provide a new view of early infant social behavior as intentional,

with the surprising intention of maximizing time spent with mother smiling at

infant and the infant not smiling herself.

xviii



Chapter 1

Introduction

We are a highly social species. Our ability to flexibly organize ourselves into

large groups capable of cooperating in a highly competitive world is responsible

for our domination of the planet. However, while the behavioral sciences have

concerned themselves with describing and cataloguing various characteristics of

social interactions, little attempt has been made to understand these interactions

from a computational perspective. Here, the term “computational perspective”

invokes David Marr who advocated a careful study of the computational problems

faced by the human brain as a means to both better understand its structure as

well as to understand how an artificial brain might be developed [34]. Marr’s

program for computational analysis involves formalizing, in mathematical terms, a

particular problem the brain appears to be solving, employing engineering methods

to derive a solution, and finally comparing the engineered solution with the one

developed by the brain as a means to illuminate the principles that might have

shaped its development.

The purpose of this dissertation is to both address many of the difficult

challenges of studying social interaction from the computational perspective and

provide examples of the power of this approach. To this end we: (1) propose,

develop, and extend algorithms to facilitate the study of social behavior from

the computational perspective, and (2) apply these techniques to understanding,

predicting, and imitating real-world social behavior.

The computational approach has been applied with considerable success to

1
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Agent System

Sensory Feedback

Control Signal
(or action)

Figure 1.1: A schematic of the feedback control problem. An agent executes
actions and receives sensory feedback from the system.

understanding sensory coding in the brain. For instance, Bell and Sejnowski used

a computational-level analysis to show that the receptive fields of neurons in the

primary visual cortex are approximately optimal for encoding visual information

given the statistics of natural images [5, 50]. Others have applied similar methods

to explain the brain’s encoding of modalities such as audio [52]. There is also a

significant body of work in the motor-control literature on using optimality princi-

ples to understand why, out of all the possible forms of human motor movements

capable of achieving some task, the brain chooses to execute a particular sequence

of movements [58, 25, 20, 29, 6]. Some of these models, most notably [58] and

[12], consider the role of sensory feedback during task execution as a means of

shaping on-the-fly the form of an unfolding motor movement. In this viewpoint,

the problems of perception and control are inextricably linked, demanding that

computational explanations of human behavior take into account the fact that

the brain’s generation of efficient motor movements unfolds within the context of

sensory signals from the environment.

The mathematical framework used to formalize models of motor movements

that account for the role of perception is known as optimal feedback control. In this

framework an organism (or more generally an “agent”) receives sensory feedback

from the environment and in response specifies a control signal with the aim of

achieving some task in an optimal fashion (see Figure 1.1). The schematic shown

in the figure depicts an agent that interacts with the environment in a circular

feedback loop where perception influences action, which influences perception, and
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so on. In order to determine the optimal control signal that an agent should specify

in response to a particular stream of sensory information, we must formalize the

agent’s performance criterion. This performance criterion might be defined either

as some explicit reward given to the agent by the environment, for instance the

delivery of food to a rat by a human experimenter, or could be determined by

an internal evaluative process of the agent itself, for instance by the dopaminergic

system of the brain. Finally, in order to determine the optimal solution, one must

specify the constraints imposed by the environment (or “system”). For instance,

in the case of modeling human-reaching-movements, the constraints of the envi-

ronment are the kinematic and dynamical properties of the human musculoskeletal

system. The beauty of this framework lies in its generality. In order to analyze any

system with circular causality at the computational-level, one need only describe

the system as an optimal feedback-control problem.

While the framework of feedback control has greatly advanced the ability

to study systems at a computational level, the program of computational analysis

of behavior goes back much further, most notably to the early Cyberneticians such

as Wiener, Rosenblueth, and Von Neumann. Cybernetics was conceived as a sys-

tematic study of purposive or goal-directed behavior in mechanical and biological

systems. The intellectual inspiration for this movement was partially derived from

work that some of the pioneers of the field had done during World War II to design

automatic weapons-targeting systems. For Wiener [62], the best way to understand

systems that exhibited circular causality (such as the one depicted in Figure 1.1)

was through the identification of the purpose, or ends, that the system’s behavior

achieved in the world.

What are the principal motivations for studying social behavior from the

computational perspective? In a similar spirit to the early Cyberneticians, we view

the identification of the goal of a social behavior as a fruitful way of understanding

and predicting the social behavior of natural agents, as well as for providing ap-

proaches for artificial agents to effectively cooperate with and flexibly learn from

natural agents. Our view is similar to that of Daniel Dennett, who advocated a

strategy called the “Intentional Stance” for understanding behavior.
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We will find whatever mechanistic regularities there are in the
functioning of internal systems whose design approaches the
optimal (relative to some ends). In seeking knowledge of inter-
nal design our most promising tactic is to takeout intelligence
loans, endow peripheral and internal events with content, and
then look for mechanisms that will function appropriately with
such “messages” so we can pay back the loans [17].

Here, Dennett draws a contrast between the intentional stance as a methodology

for understanding behavior and Skinner’s Behaviorism. Skinner, in the pursuit of

characterizations of behavior, rigidly eschewed the usage of intentional terms such

as “perceptions”, “desires”, and “beliefs”, instead focusing on the development of

laws that map environmental stimuli to an agent’s behavioral response. Dennett’s

intentional stance is not meant to devalue this pursuit. On the contrary, Dennett

believes that using intentional language to describe behavior (i.e. taking out an

“intelligence loan” by assuming intelligence on the part of the agent under inves-

tigation), is the most effective way of illuminating the mechanisms that function

in the support of that behavior. Once we permit ourselves intentional language,

events in the world become endowed with content (e.g. photons hitting the retina

become information, vibrations of the vocal chords become verbal communication).

Finally, Dennett says that if our goal is to understand an agent’s behavior at the

mechanistic level, then ultimately we must explain, without the use of intentional

language (i.e. repay our loans), how the agent is able to generate the behavior

that we have characterized up to now as intentional.

Our aim in this dissertation is precisely to take out these “intelligence

loans”. These loans provide tantalizing hints as to the mechanisms that might

be implicated in achieving the intentional behavior of the agent under investiga-

tion. Additionally, even without repaying these intelligence loans, we can reason

about how behavior might change if something about the system under investi-

gation is modified. This modification could consist of either placing an observed

agent in a new environment, or reasoning about how another agent with the same

intentions as the first (but with potentially very different sensorimotor character-

istics) might behave in the original environment. Here, these predictions can be

used for two purposes: (1) to suggest how the behavior of a natural system might
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change in response to being placed in a new environment, and (2) to synthesize

artificial behavior (e.g. on a robot) that achieves the same intentions as the natural

system.

The idea of studying social interaction at the computational level has been

proposed before [63], however, to date little progress has been made. What then

are the principle obstacles in pursuing a computational-level analysis of social in-

teractions? To understand the particular difficulties of the problem it is best to

contrast the study of social behavior at the computational level with the study of

motor movements at the computational level. For example, take the well-studied

domain of computational explanations of human point-to-point reaching move-

ments. Prominent computational-level models in this area include the “minimum-

jerk model” of Flash and Hogan [20] and the minimum torque change model of

Kawato et. al. [29]. Each approach articulates a different performance function

to explain the generation of reaching movements. In order to test whether or not

real human reaching movements support or discredit these possible performance

functions, the solution generated by optimal control theory must be compared

to empirical data. However, in order to compute the optimal behavior one must

specify the constraints the human motor system places on the potential solution.

Fortunately, in this situation these constraints are well understood given the sci-

ences of Kinesiology and Newtonian Physics. In contrast when studying social

behavior, there is no equivalently rigorous framework for deriving the constraints

placed on potential solutions (i.e. there is no exact science of “Social Physics”).

In this dissertation we take an empirical approach to learning these constraints

by using techniques from machine learning, which provides a rich set of tools for

learning structure from data.

Another difficulty for developing computational-level explanations of social

behavior, is that in contrast to the study of point-to-point reaching movements,

it may be difficult to determine a priori a reasonable performance function that

explains an observed behavior. For instance, while the particular form of the per-

formance function of point-to-point reaching movements is not settled, most ev-

eryone agrees that it has something to do with either maximizing the probability
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of contacting a target, minimizing end-point variance [25], minimizing movement

time, or some combination of these factors [6]. In a sense, it is easy to determine

a proximal goal to explain these movements. However, what is the performance

objective of an infant smiling at his mother? While we could say that the infant’s

goal is to maximize his probability of surviving into adolescence; trying to link

behavior with such a distal goal is futile. What then is a useful proximal goal that

might adequately describe this behavior? Again we turn to empirical techniques

to solve this problem by employing new methods from machine learning to system-

atically search over a large space of possible performance functions until we find

one that fits the data optimally. Again, one can see the contrast between the ana-

lytical nature of the formulation of computational explanations for point-to-point

movement with the empirical nature of the computational explanations for social

behavior.

In this dissertation we provide new computational algorithms for solving

the challenges of studying social behavior from a computational perspective. We

propose machine-learning based methods to provide approximate models of social

behaviors, not unlike Newtonian physics provides models of physical behavior. In

addition, we specify a model, based on Bayesian Inference, for determining which

intention best characterizes observed behavior of two interacting agents. Finally,

we extend this method of characterizing behavior based on intentions to a par-

ticular class of continuous time, continuous state, and continuous action control

problems that can be used to model socially interactive behavior as well as more

traditional single-agent behavior. Notably, our contribution to the determination

of intentions for this class of systems allows for a computationally efficient algo-

rithm for the synthesis of optimal behavior for a new agent (either a natural agent

in a new domain, a robot operating in the same domain, or even a robot operating

in a new domain).

In terms of applications of our techniques, we principally concern ourselves

with the study of social interactions that occur in early life between mothers and

their infants. These nonlinguistic interactions contain rich temporal structure and

unfold across many modalities (including vocalizations, facial expressions, and
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touch). The motivation for studying these social interactions from the compu-

tational perspective is to both gain an understanding of the computational prob-

lems infants solve early in life, and also to inform the development of robots that

learn to successfully interact with the physical and social world through extended

trial-and-error interactions with both social and nonsocial objects. We provide the

first ever study of infant facial expressions from a computational perspective. We

demonstrate that our findings not only facilitate the synthesis of social behavior on

a humanoid robot, but suggest potential experiments for understanding the impact

of various factors on normal social development. In addition, our findings suggest

strategies for developing interventions to achieve better developmental outcomes

for atypical infant populations. The contributions of each original chapter are

summarized below:

Chapter 3

1. We develop a model for inferring goals of mothers and infants from their

nonverbal behavior.

2. We show that mother’s smiling can be accurately predicted by ascribing her

the intentions of maximizing mutual smiling time with her infant.

3. We show that infant’s smiling can be accurately predicted by ascribing him

the intentions of maximizing time where mother is smiling and he is not

smiling himself.

4. We implement our model of infant smiling on a humanoid robot with an

infant-like appearance.

5. We perform a human robot interaction study that shows that undergradu-

ates interacting with the robot have a similar intention as mothers do when

interacting with their infants. Additionally, we show that the control poli-

cies derived from real infant smiling behavior have the expected effects on

the smiling behavior of undergraduates interacting with the robot.

Chapter 4
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1. We present a method for determining goals from behavior for biological and

mechanical systems in continuous state, action, and time.

2. We show that various types of uncertainty can be handled by our technique

in a principled fashion.

3. We show how to handle control problems with partial observability.

4. We illuminate the conditions under which the problem of inferring goals from

behavior is underconstrained.

5. We provide two methods for incorporating prior knowledge about the goals

of an agent in order to make the problem of goal-inference well-posed.

6. We provide a method for imitating the goal of a demonstrator in a novel

situation (either with a different agent, a different environment, or both).

We show that, for certain systems the imitation problem is well-posed even

when the goal-inference problem is underconstrained.

7. We show how to determine goals from the behavior of two agents interacting

in a game-theoretic setting.

8. We provide connections between the continuous and discrete inverse optimal-

control problem.

9. We apply our techniques to providing principled and flexible methods for

inferring the intentions behind infant head movements. We also implement

a system based on computer vision to infer the intention behind human head

movements from video in realtime that may have interesting applications in

the field of Human Computer Interaction.

We begin with a presentation of the mathematical background that will

allow the contributions of the dissertation to be understood more clearly.



Chapter 2

Mathematical Background

In order to pursue a computational approach to understanding social in-

teraction, we must formalize several key concepts. We must define concretely the

space of possible social behaviors, enumerate performance criteria which may ex-

plain an observed social behavior as optimal, and specify a framework for defining

the constraints that the environment places on social behavior. To formalize these

notions we invoke the frameworks of Bayesian Inference and Optimal Control The-

ory. These frameworks are naturally suited to precisely formulate what we mean

for a social system to be optimal with respect to some goal, and also to provide

data-driven methods for determining which, among a large space of goals, best

characterizes real-world social behavior. The purpose of this chapter is to pro-

vide a crash course in the relevant theory. For more extensive treatments of these

subjects consult [9] and [8].

Notation: Unless otherwise stated, capital letters are used for random vari-

ables, small letters for specific values taken by random variables. When the context

makes it clear, we identify probability functions by their arguments: e.g., p(a,b)

is shorthand for the joint probability mass or joint probability density that the

random variable A takes the specific value a and the random variable B takes

the value b. We use subscripted colons to indicate collections or sequences: e.g.

A1:t
def
= {A1 . . . At}. Symbols will be defined when they are first referenced in the

text. For a listing of symbols used regularly throughout the text see Table A.1.

9
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2.1 Bayesian Inference and Probabilistic Gener-

ative Models

Bayes’ rule, while rather simple in form, has been instrumental in the devel-

opment of modern machine learning techniques. At a purely syntactic level Bayes’

rule specifies the relationship between two conditional probability distributions:

p(b | a) =
p(a | b)p(b)

p(a)
(2.1)

However, in order to gain an appreciation of the semantic meaning of the preceding

equation it helps to consider the role that this formula plays in probabilistic genera-

tive models. Probabilistic generative models specify a probability distribution over

a set of random variables. The structure of the generative model typically suggests

some sort of logical or plausible causal process by which these random variables

are generated. For instance, a generative model might specify a distribution over

some latent category label associated with an image, and then specify a probability

distribution over the pixels that comprise the image given the previously generated

category label. Given a probabilistic generative model, if we observe some subset

of the random variables, then we can use the structure of the generative model to

infer the values of the random variables that we do not observe (also called hidden

variables). Bayes’ rule is what allows us to make these inferences.

For instance, let X by a random variable representing some pixels in an

observed image, and Y be a binary random variable which takes value 1 if the

image contains a face and 0 if it does not. Suppose we observe a particular pattern

of pixels x. We can use Bayes’ rule to determine the probability distribution over

the latent class label, Y , given the observed pixels.

p(y|x) =
p(x|y)p(y)

p(x)
(2.2)

Which by the law of total-probability and the product rule can be rewritten as:

p(y|x) =
p(x|y)p(y)∑

y∈{0,1} p(x|y)p(y)
(2.3)

Where the distributions p(y) and p(x|y) are given by the generative model.
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2.2 Stochastic Optimal Control

The problem of stochastic optimal control is to determine a controller for

an agent that achieves a specified performance criterion as well as possible. We

use the term “possible” to indicate that the algorithm must only consider con-

trollers that obey the constraints imposed by the agent’s environment. At its most

general, we imagine an agent receives an observation at each point in time and

in turn specifies a control signal that probabilistically affects the agent’s future

observations (see Figure 1.1). The goal of the optimal control algorithm in this

setting is to determine a mapping between any sequence of possible observations

and the optimal control signal to execute in response. We refer to this mapping as

a controller (or equivalently a behavior or policy).

Here, we assume the optimal control algorithm has access to a model of

how the agent’s control signals affect the likelihood of future observations given

the past observations and the agent’s executed control signals. The most basic

form of the problem is to assume that the observations consist of a system state

that encodes all the information needed to predict the system’s future behavior.

Such a system is known as a fully-observable first-order Markovian system. Here,

the model of how the agent’s control signals affect future observations is given by

a probability distribution of the next system state given the current state as well

as the agent’s control signal (although having such model is not required by some

solution techniques, for example, algorithms based on reinforcement learning [54]).

Our objective will be to compute a controller that specifies which control signal the

agent should execute in each state that maximizes the expected value of a given

performance function over the longterm.

Throughout this document we use different terminology to refer to similar

concepts (depending on the context). For the purposes of this dissertation we

consider the following terms to be equivalent:

1. performance function = reward function = objective function = intention =

-cost

2. action = control signal = decision
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3. controller = policy = behavior

2.3 Discrete State, Action, and Time Optimal

Control

We consider the problem of optimally controlling a dynamical system in

discrete time. Further, we assume that the set of possible states, X , the system

can occupy is of finite size. Additionally, we restrict ourselves to the case where

the set of actions, A, available to the agent is of finite size. We assume that we are

given a performance function, r : X × A → R, that assigns a scalar performance

value to each possible state-action combination. As in the general formulation of

the Stochastic Optimal Control problem given in the previous section, our goal will

be to compute a policy, denoted as π (which in this case is a mapping from the

current state of the system to an action), that maximizes the expected sum of the

performance function over some time-horizon. In order to solve the control prob-

lem, we require access to the system’s transition dynamics. Using the terminology

of Chapter 1, these transition dynamics can be thought of as the constraints that

the environment places on the space of potential solutions (in this case policies).

2.3.1 Problem Formulation

While there are many specific formulations of the optimal control, here we

treat the popular discounted infinite-horizon variant (see [8] for a more complete

treatment of discrete-time control). For the infinite-horizon discounted case, our

goal will be to compute the policy, π?, that satisfies the following equation:

π? = arg max
π

E

[
∞∑
i=0

γiRi

∣∣∣∣ π
]

(2.4)

Where γ ∈ [0, 1) is a discount factor that specifies the agent’s preference for achiev-

ing high performance in the short versus longterm (as γ → 0 the agent behaves

myopically, as γ → 1 the agent values future performance as much as present
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performance), and each Ri is a random variable which represents the reward the

agent accrues at the ith timestep.

2.3.2 Solution By Dynamic Programming

There are several methods for computing an optimal policy for the problem

formulation given in the preceding section. Here, we briefly sketch a very popular

solution approach based on the principle of dynamic programming called policy

iteration. The policy iteration algorithm iterates two steps until convergence: (1)

evaluating a given candidate policy, (2) improving the candidate policy. To start,

the candidate policy can be initialized to any value (random is a popular choice).

The policy evaluation step involves constructing the value function, vπ : X → R
for the candidate policy, π. Intuitively, the value function for a particular policy

specifies the expected performance over the longterm when the agent begins in a

particular state and follows the given policy. Formally,

vπ(x) = E

[
∞∑
i=0

γiRi

∣∣∣∣ π,X0 = x

]
,∀x ∈ X (2.5)

= r(x, π(x)) + γ
∑
x′∈X

vπ(x′)p(s′|s, π(x)),∀x ∈ X (2.6)

Where we went from the first step to the second step by applying linearity of

expectations, using our transition model, and substituting the definition of vπ on

the right-hand side. By consolidating the terms involving vπ on the left-hand side

of Equation 2.6 we arrive at:

vπ(x)− γ
∑
x′∈X

vπ(x′)p(s′|s, π(x)) = r(x, π(x)),∀x ∈ X (2.7)

Equation 2.7 defines a linear equation for each state. There are exactly as many

unknowns as equations. Additionally, the system of linear equations is guaranteed

to have a single solution provided γ ∈ [0, 1). The value function can be determined

by solving this system of linear equations.

Once the value function is computed, we proceed to the second step of the

policy iteration algorithm: policy improvement. In order to improve the candidate

policy, π, we first construct the state-action value function, qπ : X ×A → R, which
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specifies the expected performance over the longterm for executing a particular

action in a given starting state and then behaving according to the given policy,

π, thereafter. Formally,

qπ(x, a) = E

[
∞∑
i=0

γiRi

∣∣∣∣ π,X0 = x,A0 = a

]
, ∀x ∈ X ,∀a ∈ A (2.8)

= r(x, a) + γ
∑
x′∈X

vπ(x′)p(x′|x, a) (2.9)

Since we already have computed the value function vπ we can easily compute the

function qπ as well. The improved policy for the next iteration of the algorithm is

given by maximizing qπ for each state as a function of the action.

π′(x) = arg max
a
qπ(x, a) (2.10)

Where π′ indicates the improved policy. The two steps of policy evaluation and

policy improvement are repeated until the policy improvement step does not change

the candidate policy. Once this condition has been achieved the candidate policy

is guaranteed to be optimal [8].

2.4 Optimal Control for Systems in Continuous

State, Action, and Time

We now consider the problem of optimally controlling a continuous time,

continuous state, continuous action system. We focus on sketching solution meth-

ods for a particular class of continuous time dynamical systems that have been

used extensively for modeling biological and mechanical motor control and have

great potential to model socially interactive systems (see Section 4.12 for potential

applications).

2.4.1 Problem Formulation

First, consider the general case of controlling a dynamical system where

Ut ∈ Rm is a random process that specifies the vector-valued control signal at time
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t and Xt ∈ Rn is a random process that specifies the vector-valued state at time t.

The dynamics of the system have the following form:

dXt = a(Xt, Ut)dt+ c(Xt, Ut)dBt (2.11)

Where dt is the time differential, dBt is a vector of standard Brownian motion

differentials, and the functions a(·) and c(·) control the evolution of the system

state according to its deterministic and stochastic components respectively. For

example, the state vector, Xt, might encode the positions and angular velocities

of a robot’s joint angles and the control signal, Ut, might specify torques exerted

by a number of electric motors about those joints.

In this dissertation we consider a restricted form of the dynamical systems

in Equation 2.11 that have the following form:

dXt = (a(Xt) + b(Xt)Ut) dt+ c(Xt)dBt (2.12)

This type of dynamical system is known in the literature as a “control-

affine diffusion” since the deterministic component of the state-dynamics is an

affine function of the control signal Ut. This particular dynamical system is widely

studied in the motor control literature for its ability to model the movement of

Newtonian systems (such as the motions of the human body or multi-segment

robots). Another key difference between this formulation and Equation 2.11 is

that the gain on the Brownian-motion term only depends on the state and not

on the control signal. A very similar formulation that involves noise that scales

with the magnitude of the control signal can also be solved using the techniques

presented later in this chapter, however, the treatment of such a system is outside

the scope of this dissertation.

Solving the optimal control problem involves computing a policy, π∗, that

maps the state-time tuple (x, t) to an optimal action u∗. Here, we consider con-

trol problems over finite-time horizons with (optional) exponential discounting of

performance over time. Our goal is to compute the policy, π, that maximizes

the expected performance achieved during the time horizon. Specifically, π? must

satisfy the following equation:

π∗ = arg max
π

E

[
ψ(XT ) +

∫ T

0

e−
t
τ rt(Xt, Ut)dt|π

]
(2.13)
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Where T is the terminal time, rt defines the instantaneous performance rate, τ

specifies temporal discounting of the performance rate, ψ specifies the performance

function at the terminal time, and the random processes Xt and Ut evolve based

on the given policy π and the SDE in Equation 2.12. It can be shown through a

straightforward application of Ito’s rule, that finding the policy π? that satisfies

this equation can be reduced to find the function v that satisfies the following

Partial Differential Equation (PDE) for all times t and states x (see [40] for a full

derivation):

−∇tvt(x) = max
u

{
− 1

τ
vt(x) + rt(x, u) + (a(x) + b(x)u)>∇xvt(x)

+
1

2
trace

(
c(x)c(x)>∇2

xxvt(x)
)}

(2.14)

vT (x) = ψ(x) (2.15)

Where the action for the optimal policy, π∗, for a particular state-time tuple, (x, t),

is given by the u that maximizes the right-hand side of Equation 2.14. Equa-

tions 2.14 and 2.15 are known as the Hamilton-Jacobi-Bellman (HJB) equations.

The function vt is known as the optimal value function and specifies the expected

performance accrued when starting in state x and then running the optimal policy

π? starting from time t until the terminal time T . That is:

vt(x) = max
π

E

[
ψ(XT ) +

∫ T

t

e−
s−t
τ rs(Xs, Us)ds

∣∣∣∣ π,Xt = x

]
(2.16)

Next, we make the additional assumption that the performance rate is quadratic

in u, i.e. rt(x, u) = ρt(x)− 1
2
u>qu. Where q is a known symmetric positive-definite

matrix (which can optionally depend on the state and time). This decomposition

of the reward function involves two terms: an arbitrary state-desirability rate, ρt,

and a quadratic cost-rate that penalizes large control signals. This decomposition

allows us to perform the maximization over the control signal, u, in Equation 2.14

analytically. Following some simple algebra, the maximizer is given by:

π∗t (x) = q−1b(x)>∇xvt(x) (2.17)

This equation has a meaningful interpretation. In a particular state the agent

should choose an action that follows the steepest ascent direction with respect to
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the value function. The term q−1b(x)> modifies the notion of steepest ascent to

account for both the relative “ease” of modifying the state-differential through a

particular component of the control signal as well as differential costs that are

incurred for using different components of the control signal. Next, we substitute

the maximizer from Equation 2.17 into Equation 2.14 in order to obtain the HJB

equation without the maximization operator.

−∇tvt(x) = −1

τ
vt(x) + ρt(x) +

1

2
∇xvt(x)>b(x)q−1b(x)>∇xvt(x)

+a(x)>∇xvt(x)

+
1

2
trace

(
c(x)c(x)>∇2

xxvt(x)
)

(2.18)

vT (x) = ψ(x) (2.19)

The preceding equations give the Hamilton Jacobi Bellman (HJB) equations for the

stochastic systems with dynamics given by Equation 2.12 and optimality criterion

given by Equation 2.13. Next, we turn our attention to methods for solving these

equations in order to obtain an optimal controller.

2.4.2 Collocation Methods for Solving the Optimal Con-

trol Problem

For all but a few special cases, such as those resulting from linear con-

trol problems with quadratic state costs, it is computational difficult to solve the

HJB equations exactly. In this dissertation, we consider solutions to these equa-

tions based on collocation. Collocation methods have become a popular approach

for solving continuous state control problems due to their flexibility and natural

connections to machine learning approaches [51, 59, 56].

The basic procedure for using collocation methods to solve the HJB is to

first choose a set of times 0 = t1 < t2 < . . . < tl = T and corresponding sets

of states x1 . . .xl. Next, we seek to satisfy the HJB as closely as possible at the

resulting state-time tuples. Precisely, we seek to compute a v such that sum of

squared differences between the left-hand and right-hand sides of the HJB equation
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are as small as possible.

v? = arg min
v

l−1∑
i=1

∑
x∈xi

(
∇tvti(x)− 1

τ
vti(x) + ρti(x)

+
1

2
∇xvti(x)>b(x)q−1b(x)>∇xvti(x)

+a(x)>∇xvti(x)

+
1

2
trace

(
c(x)c(x)>∇2

xxvti(x)
))2

+
∑
x∈xl

(vtl(x)− ψ(x))2 (2.20)

We seek to minimize the preceding equation over all value functions from some

parameterized family. In particular, we parameterize the value function as a linear

combination of non-linear basis functions:

vt(x,wt) =
d∑
i=1

φt,i(x)wt,i (2.21)

Where φi,j is the jth basis function at time ti. There are two main approaches

for computing the weights that minimize Equation 2.20. The first is to recognize

that the optimization problem is a non-linear least-squares problem, and that

tools such as Levenberg-Marquardt Optimization can be applied to compute a

local minimizer [39]. However, a more efficient approach which we apply in this

dissertation is to solve a sequence of linear least-squares problems backwards in

time from the terminal time T to the initial time 0. We begin by showing how to

compute the weights at the terminal time T . We seek to compute the weights that

minimize the following equation:

w?tl = arg min
w

∑
x∈xl

(vT (x,w)− ψ(x))2 (2.22)

Once we have solved for the optimal w at the terminal time we proceed backwards
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in time by solving the following optimization problem:

w?ti−1
= arg min

w

∑
x∈xi−1

(
vti(x,w

?
ti

)− vti−1
(x,w)

ti − ti−1
− 1

τ
vti(x,w

?
ti

) + ρti(x)

+
1

2
∇xvti(x,w

?
ti

)>b(x)q−1b(x)>∇xvti(x,w
?
ti

)

+a(x)>∇xvti(x,w
?
ti

)

+
1

2
trace

(
c(x)c(x)>∇2

xxvti(x,w
?
ti

)
))2

(2.23)

We replaced the temporal derivative of the value function with an approximation

based on finite differences. Since we assume a linear parameterization for vt and

that wi is held fixed before solving Equation 2.23, the optimization variable w only

shows up linearly. Thus, the preceding optimization problem can be solved using

linear regression. Additionally, if the set of points xi are constant for all time

indices and the same set of basis functions are used for all time indices, one can

precompute the pseudo-inverse for the regression problem and solve each step of

the backwards pass using a matrix multiplication (rather than having to repeatedly

solve a least-squares regression).



Chapter 3

Computational Analysis and

Synthesis of Infant Intentions in

Early Social Interaction

Abstract : We present a computational study of the intentions of mothers

and four-to seventeen-week-old infants engaged in face-to-face interaction. We

model sequences of mother and infant smile onsets and offsets as optimal behavior

with respect to both the agent’s intention and the statistics of the probabilistic

responses of his or her partner. We develop a Bayesian model to infer these in-

tentions from a database of mother-infant interactions by identifying key markers

of intentionality in the temporal patterns of both mother and infant smiling. Our

model shows that the pattern of smiles of mother is consistent with the intention of

drawing her infant into prolonged periods of mutual smile. Surprisingly, the pat-

terns of infant smiling reveal an intentional agent that seeks to make his mother

smile without smiling himself. Next, we instantiate our model of infant smiling on a

highly-expressive humanoid robot with an infant-like appearance. The data from

this study exhibited strikingly similar patterns to the mother-infant interaction

data.
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3.1 Introduction

A key goal of developmental psychology is to characterize the progression of

infants’ social, cognitive, and motor capacities that lead to the emergence of inten-

tional communication towards the end of their first year [11, 53, 31, 60, 16, 65, 36].

In this endeavor, scientists have looked for markers of “adult-like” intentional com-

munication, such as eye-contact and persistent gestures, as signals of the beginning

of the ability of infants to actively pursue their intentions in social interactions.

However, some scientists, such as Bates [4], have suggested that infants need not

necessarily wait for these milestones to actively enlist others in the pursuit of their

intentions. In contrast, intentional infant social behavior is distinguished only by

an infant’s ability to manipulate social objects, e.g. a caregiver, in a similar man-

ner as an infant might manipulate a physical object. Here, we provide a formal

framework for defining, detecting, and characterizing the emergence of intentional

social behavior in early infancy. Our framework determines from first principles

the specific forms that infants’ intentional behavior can assume, providing a rig-

orous data analysis technique for understanding intentional behavior without con-

straining ourselves to look for the development of adult-like markers of intentional

communication. Our framework is based on adopting what Daniel Dennett calls

the “intentional stance” toward understanding the nonverbal behavior that marks

face-to-face mother-infant interaction in the first few months of life [17].

Dennett’s “intentional stance” is a strategy for an external observer to

understand and predict the behavior of an agent by ascribing it intentions (e.g.

goals or desires). However, to realize the power of the strategy we should not

simply ascribe arbitrary intentions to the agent, but rather those that best explain

an observed pattern of behavior as optimal with respect to the constraints imposed

on the agent by its environment. For instance, consider the case that we are on a

safari and observe over several hours the actions of a lion and a group of zebra. We

watch the lion stalk through the high grass slowly approaching the herd. When the

lion closes within 20 feet of the herd she springs into action; throwing herself at the

closest zebra. How should we understand this lion’s behavior? A very compact

and powerful description is to adopt the intentional stance toward the lion by



22

ascribing it the intention of killing a zebra. From this point of view, the very

disparate behaviors of stalking through the grass and running full speed toward

the zebra suddenly become unified under an intentional explanation. Additionally,

if we desire to predict what the lion will do in a hypothetical situation, then we can

reason about which of the lion’s behaviors would maximize its chance of achieving

its intention in this new situation. For instance, if one of the zebras broke from

the pack and appeared to be injured, it would be quite easy to guess what the lion

would do next. Even if we did not know a priori that lions like to hunt zebra, if

we assume that the lion is an intentional agent and have a reasonable idea of a set

of intentions that lions might have, then it would become obvious quite quickly

that, out of all these possible intentions, the lion’s movements are best predicted

by ascribing to her the intention of trying to bring down one of the herd.

Another example of a system whose movements can be successfully ex-

plained by adopting the intentional stance is an anti-aircraft missile. Imagine as

you pilot your jet fighter through the skies, that you see on your radar a rapidly

approaching anti-aircraft missile. As you bank your plane hard to the right, you

notice that the missile abruptly changes course to the right as well. A very com-

pact and powerful understanding of the missile’s behavior in this situation is that

the missile is an intentional system with the intention of striking your jet. This

understanding of the missile as intentional allows you to accurately predict future

movements of the missile in response to evasive maneuvers that you might execute.

In the two preceding examples, the mechanisms that lead to an external

observer being able to use the intentional stance as a successful means of un-

derstanding and predicting behavior are quite different. In the case of the lion,

the intentional behavior was likely shaped by millions of years of evolution along

with learning processes that occur during the lion’s lifetime. In the case of the

anti-aircraft missile, the intentional behavior is realized by the efforts of human

engineering and technological innovation. From the point of view of the intentional

stance, all that matters is the success of the strategy for explaining behavior. The

strategy of adopting the intentional stance is agnostic to the underlying processes

and mechanisms that bring about the intentional behavior. To put it another way:
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if you were a zebra in the herd or the pilot in the preceding example, would you

care about the particular mechanisms that brought about the intentional behavior

of the lion or the missile? Determining the intentions behind behavior, whether

mechanical or biological, is vital to our survival. In fact, we generate intentional

explanations of behavior so effortlessly that we probably don’t even realize how

regularly we engage in the practice.

Here, we adopt the intentional stance toward understanding the behavior

of mothers and infants in face-to-face interactions. As we previously stated, in

order to fully realize the power of the intentional stance for both understanding

and predicting behavior we do not wish to ascribe arbitrary intentions to mothers

and infants but instead ascribe those that optimally explain their behavior. In

the case of the lion, it seem obvious that when a hungry lion is in close proximity

to a zebra, ascribing her the intention of hunting the zebra is a highly successful

application of the intentional stance. What intentions should we ascribe to mothers

and infants? Here we employ a data-driven approach. We use new techniques

from Bayesian inference and optimal control theory to search over a large space of

possible intentions until we find the one that best explains the behavior of infants

and their mothers.

Next, we instantiate a model of the observed infant smile-timing in an ex-

pressive infant-like robot. We perform a human-robot interaction study in which

we recreate the setting of the mother-infant face-to-face interactions as faithfully

as possible. We seek to determine if the smile behavior, learned from infants in-

teracting with their mothers, will achieve the inferred intention on undergraduates

interacting with the robot.

In the discussion, we examine how the identification of a particular inten-

tion that successfully predicts infant behavior suggests new research directions,

including both behavioral and neuro-imaging studies, for exploring the mecha-

nisms behind the realization of this intention. Another strength of adopting the

intentional stance is the ability to make predictions of mother-infant behavior when

the behavior of one partner is abnormal. To this end, we discuss possible applica-

tions of our model to understanding both infant social development with depressed
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mothers, as well as possible ways in which the intentional stance may help design

early diagnoses and treatments for Autism.

3.2 Optimal Control Models of Behavior

The intentional stance explains an agent’s behavior by ascribing it inten-

tions that render the agent’s actions optimal with respect to the constraints im-

posed by its environment. In this section, we formalize Dennett’s intentional stance

by formalizing what it means for a behavior to be optimal with respect to a par-

ticular intention and a particular set of environmental constraints. Here, we show

that the mathematical theories of Optimal Control and Bayesian Inference are ide-

ally suited for this task. Please note that some of this material is also contained

in Chapter 2, however, key bits are repeated here to allow this chapter to be more

clearly understood.

3.2.1 Mathematical Formalism of Optimal Control

The optimal control problem is to determine a controller for a system that

achieves a particular performance objective on average as well as possible. Where

the term “average” is required because we allow the system to be stochastic. In the

most general case, an agent is faced with a stream of observations, and performs

actions that probabilistically affect the agent’s future observations. The controller

(or policy), which is the output of an optimal control algorithm, specifies an action

for the agent to execute in response to any stream of observations that maximizes

the agent’s average achievement of the given performance objective.

Here, we use a common formulation of the optimal control problem called

a Markov Decision Process (MDP). In the MDP setting, at each discrete timestep

the agent observes the current state of the system and in response specifies an

action. The underlying system is assumed to be Markovian which implies that

the probability distribution over the next state of the system is conditionally inde-

pendent of all previous states and actions given the current state and the current

action. The probability distribution over the next state given the current state and
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action is called the transition dynamics and intuitively specifies the laws governing

the behavior of the system (or equivalently the constraints that the environment

places on possible solutions). The specification of the system states, agent actions,

and transition dynamics are collectively known as the plant of the control system,

and intuitively specify the probabilistic laws governing the agent’s interaction with

its environment.

We assume that the agent seeks to maximize, over the long-term, the aver-

age value of a performance function, r(·), which specifies how desirable an agent

finds each encountered state-action pair. In our formalization of Dennett’s inten-

tional stance, we equate the notion of an agent’s intention and this performance

function, r(·). The optimal behavior that maximizes a given performance function

is called the optimal policy, denoted by the variable, π?, and specifies the optimal

action for the agent to perform in any particular state. We require that π? satisfy:

π? = argmax
π

E

[
∞∑
t=0

γtRt

∣∣∣ π] (3.1)

Where R0:∞ is an infinite sequence of random variables specifying the value of the

performance function at each time step and γ ∈ [0, 1) is a discount factor that

specifies how desirable the agent finds achieving high performance now versus in

the future. Richard Bellman provided a set of equations that provide necessary

and sufficient conditions for a given policy (or controller) to be optimal:

π(x) = argmax
a

{
r(s, a) + γ

∑
x′∈X

p(x′|x, a)vπ(x)

}
,∀x ∈ X (3.2)

Where vπ represents that value function for the policy π, x is a state, and X is the

set of possible system states. Intuitively, the value function specifies the expected

long-term achievement of the performance function when starting in the state x

and employing the policy π. The expression inside the maximizer on the right-hand

side of Equation 3.2 is the state-action value function, qπ, and is defined as:

qπ(x, a) = r(s, a) + γ
∑
x′∈X

p(x′|x, a)vπ(x) (3.3)

The function q represents the expected value of the performance function of the

agent over the long term if it executes a particular action in the state x, and
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then behaves according to the policy π thereafter. Intuitively, we can think of

the relative values of qπ(x, a1) and qπ(x, a2) as determining which action, a1 or a2,

is more optimal in the state x for achieving the agent’s intentions. To find the

optimal policy, we use the policy iteration algorithm [8].

In order to complete the formalization of Dennett’s intentional stance, we

next define a function that specifies how likely an agent is to execute a particular

action in a particular state given the optimal policy. Later, we will use these

likelihood functions to determine which of a set of intentional models best explains

a database of observed behavior. How should these probabilities be determined?

A simple choice would be to assign probability 1 to the action given by π? and 0 to

all others. However, this choice is likely to be overly optimistic about the ability

of the agent to consistently execute exactly the action prescribed by the optimal

policy. Here, we assign probabilities to an agent’s actions by assuming it employs

a softmax action selection rule:

p(a|x, qπ?) =
eτq

π? (x,a)∑
a′ e

τqπ? (x,a′)
(3.4)

Where τ ∈ R+ is a scalar parameter that when close to 0 makes the action prob-

abilities uniform and when close to infinity reverts to predicting the agent will

always choose the optimal action.

All of the machinery we have presented thus far has assumed that we know

the agent’s intention. What if we don’t know a priori the agent’s intention, but

must infer it from observing the agent’s behavior? Here, we employ a Bayesian

approach, originally proposed in [47], to solve the problem. Our strategy is to

use Bayes’ rule to compute the posterior probability of a potential intention given

observations of the agent’s actions. With a bit of algebra and the assumption that

each action is independent given the agent’s intention and the current system state

we can show that:

p(r|x1...N , a1...N) ∝ p(r)ΠN
i=1p(ai|xi, r) (3.5)

Intuitively, this equation specifies that our belief about how likely an agent is be-

having optimally according to a particular intention is proportional to the product
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of two terms. The first term is the prior probability of how likely we thought the

agent was to pursue the intention r before we observed the agent’s behavior. The

second term encodes how probable the actions of the agent are assuming that the

agent has the intention r. This completes our formalism of Dennett’s intentional

stance. Note, that just as the intentional stance dictates that we should ascribe

intentions that best explain observed behavior, here we ascribe the intentions that

assign the highest likelihood to the observed behaviors. In other words, we seek

the intentional explanation that results in us being the least “surprised” by the

agent’s actions.

3.3 Mother-Infant Interaction Study

We employ Dennett’s intentional stance toward understanding the early

patterns of smiling between mothers and their infants. Our aim is to ascribe in-

tentions to both mothers and infants that best explain their behavior as optimal.

The technique described in the previous section gives us a principled method for

asking the following question couched in intentional language “in these early in-

teractions, what are they each trying to do?”. It is possible that our method will

uncover that all intentions are equally good at explaining the observed patterns

of interaction (i.e. the posterior distribution over performance functions is flat).

However, if after analyzing the patterns of interaction most of the posterior proba-

bility is on a particular performance function then we can confidently adopt these

intentions as suitable explanations for understanding early mother-infant face-to-

face interactions.

3.3.1 Dataset

As part of a study carried out by the developmental psychologists Alan

Fogel and Daniel Messinger [38], thirteen mother-infant dyads were seen weekly

between the ages of four and twenty-four weeks. The mother was instructed to

play with her infant for a period of 5 minutes in a similar manner as she would at

home. The infants were positioned on the mother’s lap, facing towards her.
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The following behavioral channels were coded at 30Hz: mother smile (yes

/ no), infant smile (yes / no), infant gaze (at mother / away from mother). Since

gazing away has been identified as a mechanism for infants to regulate arousal

[36], and thus may signal a switching of intention, we only analyze segments when

the infant is gazing at mother. Additionally, between the ages of 18 and 24 weeks

infants begin to spend a significant portion of their time gazing at non-social objects

in the environment; therefore, an analysis of infant intentions for this age range

that does not take this shift into account is likely to be misleading. We choose to

focus on the period of life between 4 and 17 weeks when the majority of an infant’s

time in the face-to-face interaction is spent gazing at mother.

3.3.2 Model

Here we specify the mapping between the behaviors in the longitudinal

dataset and language of control theory defined in the previous section.

Plant Models

We begin by defining the plant models that describe the control problem

faced by both mother and infant. That is, in order to determine the intentions of

mothers we specify the relevant states, actions, and transition probabilities gov-

erning the control problem she faces. Similarly, to model the intentions of infants,

we specify the relevant states, actions, and transition probabilities governing the

control problem he faces.

State space: the state of the interaction is encoded with two binary chan-

nels, one to encode whether or not each partner is smiling, as well as two continuous

valued channels that encode how long each partner has been in its current config-

uration of smiling. For instance, one state of the system is that mother is smiling

and she has been smiling for 5 seconds while the infant is not smiling and he has

been not smiling for 2 seconds. Each of these dimensions of the state have been

previously identified [37] as being important for predicting both mother and infant

nonverbal behavior. In order to apply the solution techniques for the control prob-

lem described in the previous section, we convert the continuous dimensions of the
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state space by discretizing them into fifty 400ms segments representing the time in-

tervals [0s, 0.4s), [0.4s, 0.8s), [0.8s, 1.2s), . . . , [19.6s,∞]. To construct the full state

space, we take the Cartesian product for each of the individual state components

(i.e. the 2 binary smile variables and the 2 temporal variables) yielding a total of

10,000 states (2× 2× 50× 50 = 10, 000).

Action space: when modeling infant behavior, the action space encodes

whether or not the infant will be smiling at the next time step. When modeling

mother behavior, the action space encodes whether or not mother will be smiling

at the next time step.

State transition dynamics: When modeling infant behavior the transition

dynamics encode mother’s probabilistic responses to the infant’s smiling, whereas,

when modeling mother behavior the transition dynamics encode the infant’s prob-

abilistic responses to mother’s smiling. One can think of the transition dynamics

as playing the role of the “Social Physics” described in the previous section. In

order to estimate the transition probabilities for a given state, we require an esti-

mate of how likely the other agent is to change smile configurations during the next

400ms. For instance, if we are modeling the control problem from the infant’s point

of view, then the transition probabilities from the state of both smiling when it has

been 1.2 seconds since infant started smiling and 2 seconds since mother started

smiling are completely determined by how likely mother is to stop smiling within

the next 400ms in that particular state. The probability of a particular agent

changing her smile given the current state is computed using maximum likelihood

estimation with temporal pooling. Pooling is required due to data sparsity, which

did not allow us to estimate the probability of an agent switching smile for each of

the 10, 000 states independently. Specifically, we fit the smile change probabilities

independently for each joint smile configuration, but pooled data over similar tem-

poral contexts. We estimate the smile change probabilities over the next 400ms

by pooling data over the 16 regions of the two-dimensional space of time since

each partner last changed smile (shown in Figure 3.1). The particular choice of

the regions is motivated by allocating exponentially less temporal resolution as the

time since each agent changed smile configurations gets larger. As a result, the
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Figure 3.1: Regions used for temporal smoothing for maximum likelihood esti-
mation of the state transition probabilities.

transition dynamics models for mother and infant each have 64 model parameters.

Prior Distribution over Intentions

We assume that each agent, mother and infant, intends to maximize a

particular performance function from some finite set. We construct this set of in-

tentions to encode our prior beliefs about intentions that are likely to accurately

explain both mother and infant smiling. Each performance function considered

assigns a fixed performance value per unit time spent in each of the four possi-

ble joint smile configurations. Specifically, without loss of generality we set the

performance value for one of the configurations to always be 0, and then perform

a uniform grid search over the performance values (ranging from -.5 to .5, with

11 total values considered) for the other 3 configurations. This construction gives

us a total of 1,331 possible intentions (or performance functions) to consider. We

assume a uniform prior probability over each of these 1,331 intentions. In order

to compute the posterior probability of a particular characteristic of the agent’s
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intention (e.g. that infants prefer mother to smile at them), we use the law of total

probability which tells us to sum the posterior probability mass over all intentions

that are consistent with the particular characteristic.

Controller Models

Our model produces a template for each considered intention which assigns

a likelihood to each observed smile onset and offset. We use a variant of the

softmax action selection rule defined in Equation 3.4 to specify the likelihood of

an agent’s action given a particular intention.

p(smile|x, r, w1, w2) =
ew1qπ

?
(x,smile,r)+w2(issmiling(state))

ew1qπ
? (x,smile,r)+w2(issmiling(x)) + ew1qπ

? (x,no−smile,r)

Where qπ
?

is the optimal state-action value function for a given intention, x is the

state of the interaction, r describes the agent’s intention, w1 and w2 model the

agent’s ability to choose the most efficient action as well as an inertia term that

enforces continuity of smile behavior over time, and issmiling is a binary function

that returns 1 if the agent is smiling in state x and −1 otherwise. The values of

w1 and w2 are chosen independently for each considered intention to maximize the

likelihood of the agent’s actions. Recall from the previous section that the higher

the likelihood of the dataset under a particular intentional model, the better the

agent’s actions can be predicted by ascribing the agent that particular intention.

Clarifying Example

Next, we present a hypothetical example of how observing different patterns

of mother smiling towards her infant might help us provide evidence either for or

against a particular intention. Suppose the state transition dynamics that we learn

from data are such that: (1) infants will never smile unless their mother is smiling,

(2) if the infant is to respond to a particular mother smile, she will only respond

between 1 and 2 seconds following its initiation. Assuming mother’s intention is to

get her infant to smile with her as much as possible, what behavioral policy would

be optimal for achieving this intention? Without providing too much unnecessary

detail, a rough intuition is that the optimal strategy would be for her to smile for
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two seconds, and if the infant does not smile back, then she would stop smiling

and then immediately smile again. The softmax action selection rule specifies how

likely mother is to smile in any particular state. To continue our hypothetical

example, we would find it very unlikely if a mother who has the intention of

making her infant smile ceases to smile after only smiling for 1 second. However,

we would be far less surprised if that same mother took a short break in between

attempts to get her infant to smile. The softmax rule formalizes the intuitive logic

that pausing for a second or two in between smiles is not significantly worse than

smiling immediately after ending a smile for getting her infant to smile. However,

if mother always stops smiling after 1 second then she will never cause her infant

to smile.

Figure 3.2 shows the graphical model (originally proposed in [47]) specifying

the generative process for intentional behavior. The circles correspond to random

variables and the arrows incident to a particular circle can be interpreted as the

random variable in the circle being probabilistically generated based on the values

of the random variables in the incident circles. For instance, the figure encodes that

the variable X2 is generated based on U1 and X1. Shading is used to indicate which

variables are able to be observed directly from the data. The unshaded variables

are those that we infer using Bayesian inference. In the case of modeling infant’s

behavior, the action nodes A1:n correspond to infant actions and the plant model

encodes the infant’s knowledge of mother’s probabilistic responses to her actions.

In the case of modeling mother’s behavior, the action nodes A1:n correspond to

mother actions and the plant model encodes the mother’s knowledge of infant’s

probabilistic responses to her actions.

3.3.3 Results

Mothers interacting with their infants have the intention to maximize pe-

riods of mutual smiling (p < .001 non-parametric test). That is, if our goal is to

explain mother’s behavior as effectively as possible we should ascribe to her the

intention of maximizing time spent engaging in mutual smiling with her infant. In

order to compute the given non-parametric significance value, first new sessions
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Figure 3.2: The graphical model specifying our model of the generation of inten-
tional behavior of either mother or infant. The bubbles labeled X are states, those
labeled A are actions, and Q is the optimal action-value function given a particu-
lar performance function and a plant model. Subscripts on variables indicate the
temporal sequence in which the variables are generated.

were synthesized using randomly paired mothers and infants which were then an-

alyzed in an identical manner to how we analyzed the true pairings. Second, we

observed how many times the random session pairings showed a particular inten-

tion to be a better characterization of the data than the other possible intentions

by the same or greater margin as we found in the true pairings.

Next, we found that the smiling of infants reveals an intention to maximize

time spent with mother smiling at them while they are not smiling themselves

(p = .02 non-parametric test). We refer to this configuration as “mother-only

smiling”. That is, out of all the possible intentions that infants might have, the

one that is most predictive of infant smiling is the intention of maximizing the

duration of mother-only smiling. On the x-axis of Figure 3.3 are the smile initiation

and termination probabilities predicted by different infant intentions, and on the

y-axis are the empirical probabilities of those same events. The size of the points

is proportional to the total amount of time spent in each context. The intentions

shown in the scatter plots were selected as the most predictive intentions from

each of several sets of intentions that have easily interpretable high-level meanings

(from left to right across each line): any intention, maximize time spent in both not
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smiling, maximize time spent in infant-only smiling, maximize mutual smiling, and

indifference to mother smiling. The best fitting intention (top plot) corresponds

to maximizing time spent in mother-only smiling. If a model were a perfect fit

to the data, then all of the points would lie on the line y = x. To compute

how well each model fits the data, we computed a weighted correlation for each

scatter plot (where the weighting is determined by the proportion of time spent in

each context). Table 3.1 shows weighted correlations across all contexts as well as

weighted correlations across only those contexts corresponding to smile initiations.

The data in the table show us that several intentions capture the general trend

that smile initiations are less probable than smile terminations. However, only the

model of the infant’s intention as maximizing time spent in mother-only smiling

captures this coarse trend as well as the trend of the contexts in which infant

is more or less likely to initiate a smile (see Figure 3.4). Table 3.1 shows that

the best fitting intentional model achieves a weighted correlation between model

predictions and empirical data for contexts corresponding to smile initiations of .5

(much higher than the other models). The fourth column of Table 3.1 shows how

the information viewed in the scatter plots translates into a ratio of how likely

the data is under one intentional model versus the intention to maximize mother-

only smiling. All other intentions have very small likelihood ratios, indicating the

presence of strong evidence for the intentional model of maximizing mother-only

smiling. Therefore, even though some of the weighted correlations are relatively

close among some of the intentional models, we have enough evidence to be able to

confidently hone in on one particular intentional explanation for infant’s behavior.

Figure 3.5 shows descriptive statistics of the posterior distribution over

both mother and infant intentions. The figure elaborates our principal findings

concerning each agent’s preferred smile configuration by specifying the quantita-

tive performance value that each agent appears to assign to being in each of the

four joint smile configurations. In addition to these group-level characterizations of

intentions, we also computed distributions over the intentions of individual moth-

ers and infants (i.e. using only one individual’s observed smiling behavior). Due

to data sparsity, the plant model was not modified to reflect the particular re-
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Table 3.1: Weighted Pearson correlation coefficients between the smile initiation
and termination probabilities for different intentional models and the empirical
probabilities. The weight for each point is proportional to the amount of time
spent in each context. The second column is the weighted correlation across all
contexts, whereas the third column is the weighted correlation across only con-
texts corresponding to smile initiations. The fourth column is the likelihood ratio
between a particular intention and the intention to maximize mother-only smiling.

Intention All Infant Not Smiling Lik. Ratio

Mother Smile, Infant No Smile 0.73 0.50 1

Both No Smile 0.66 -0.33 1.0× 10−19

Both Smile 0.13 0.22 1.4× 10−67

Infant Smile, Mother No Smile 0.47 -0.11 1.3× 10−43

Indifferent to Mother Smile 0.68 0.00 3.4× 10−14

sponse patterns of an individual’s partner. Using the same method as we used

for characterizing group-level intentions, for each agent (i.e. a mother or an in-

fant) we computed the posterior probability that he or she maximally prefers each

of the four joint smile configurations. The bottom row of Figure 3.5 shows the

mean of these posterior probabilities across the 13 mothers and 13 infants. These

bar graphs indicate that while there is individual variability in intentions across

the dataset, the majority of infants and the majority of mothers have intentions

consistent with the inferred group-level intentions.

Next, we performed two analyses to further illuminate specific infant strate-

gies that were responsible for the model’s inference of the infant’s intention as

maximizing mother-only smiling. We call these analyses “When to Smile” and

“When to Stop Smiling” for reasons that will become clear shortly.

When to Smile

We first examined a context in which the infant would have to determine

an optimal tradeoff between maximizing performance now and executing behavior

that leads to better performance over the long term. Specifically, we looked at

when the infant should smile again if he has just broken a mutual smile with

mother. Our analysis shows that infants have the intention of maximizing mother-
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Figure 3.3: Scatter plots showing empirical infant smile initiation and termination
probabilities versus model predictions. The size of each point is proportional to
the amount of time spent in that particular context. Smile initiations are shown
with a circle and terminations are shown with an “x”.
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Figure 3.4: Scatter plots showing empirical infant smile initiation probabilities
versus model predictions. The size of each point is proportional to the amount of
time spent in that particular context.
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Figure 3.5: Descriptive statistics of the posterior distribution over mother and
infant intentions. The bar graphs in the left column correspond to the distribution
of infant intentions, and those in the right column refer to mother intentions.
From top to bottom the rows indicate: the posterior mode, the posterior mean,
and the mean posterior probability (over the 13 dyads) that a given infant or a
given mother will maximally prefer a given state. MS and IS are short for Mother
and Infant Smile. MNS and INS are short for Mother Not Smiling and Infant Not
Smiling.
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only smiling, which is precisely the configuration in which the infant now finds

itself. Naively, one would expect that the infant would be very unlikely to ever

smile in this situation. However, empirically this is not the case. In fact the infant

is much more likely than average to smile after having recently broken a mutual

smile. To understand how smiling in this situation might be an optimal behavior,

we considered two potential plans of action that the infant might follow in this

situation. First, the infant might decide not to smile again and simply enjoy the

current state of mother-only smiling. Alternatively, the infant might decide to

rejoin mother in a mutual smile some number of seconds in the future. The first

strategy can be viewed as myopic since it maximizes the time spent in mother-only

smile right now. However, the second strategy might be better in the long run.

Suppose that the infant smiles 2 seconds after breaking the mutual smile. The

infant will have experienced 2 seconds of mother-only smiling before rejoining the

mutual smile. However, when the infant ceases smiling again, she has the chance to

enjoy another 2 seconds of mother-only smiling, and so on. Of course, it is possible

that if the infant waits 2 seconds to smile, then mother might stop smiling before

the infant gets a chance to smile again. Therefore, the infant is in effect facing

the problem of determining the optimal tradeoff between risking that mother will

stop smiling before the infant rejoins mother in a mutual smile and enjoying the

mother-only smile right now. Figure 3.6 shows the expected amount of mother-

only smiling the infant would get before mother stops smiling for various infant

smile wait times. The empirical data show that the smile wait times with higher

expected mother-only smiling are also those that are more likely to be selected by

the infant. The bottom four plots in Figure 3.6 show the predictions for alternative

infant intentions. The alternative intentions do not fit the empirical trend.

When to Stop Smiling

Next, we examined the relationship between different durations of infant-

initiated smiles (smiles where mother is currently not smiling) and their relative

efficiency for achieving mother-only smiling. We examined each episode where the

following occurred: (1) infant smiled at mother and mother was not smiling, (2)
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after some period mother begins to smile and infant terminates her smile (either

ordering is acceptable), and (3) mother eventually terminates her smile. We com-

puted the total amount of mother-only smiling during one of these episodes as a

function of the duration of the infant’s smile. Shown in the left plot of Figure 3.7

are the efficiencies of different infant smile durations for creating mother-only smil-

ing. The right plot shows that smile durations that are less efficient are less likely

to be selected by the infant. The bottom four plots in Figure 3.7 show the pre-

dictions for alternative infant intentions. While several other intentions match the

empirical probability for different duration smiles, no alternate intention is a good

fit to the data in Figure 3.7 and Figure 3.6.

Our analysis presents a different picture of infant intentional communication

than the classical view. We show that early infant social behavior can successfully

be described as intentional without any need to look for morphological character-

istics of adult intentional communication (e.g. eye contact or persistent gestures).

In this view, the first forms of infant intentional communication do not arise at

the end of the first year, but during the first four months of life. In order to enrich

our understanding of these principles we perform a human-robot interaction study

with a highly expressive infant-like robot. The usage of a humanoid robot allows

us to manipulate timing and contingency patterns in a way that helps us better

understand the intentional nature of smiling in early infancy.

3.4 Human-Robot Interaction Study

The purpose of this study is to determine if the models of infant smiling

distilled from the mother-infant interaction data would have a similar effect on

participants interacting with a highly life-like infant robot as they did on mothers

interacting with their infants. Of particular interest is determining whether the

temporal patterns of infant smiling, which we have shown can be understood as in-

tentional behavior for maximizing mother-only smiling, will maximize participant-

only smiling when instantiated on a robot. The robot used for this study, Diego

San, has a realistic infant-like face that is capable of displaying a large repertoire
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Figure 3.6: The average performance (dashed lines) of various infant wait times
before rejoining mother in a mutual smile when the infant has just terminated a
mutual smile vs. the empirical probability (dots) that the infant selects a particular
wait time. Each plot corresponds to a different possible infant preference over joint
smile configurations.
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Figure 3.7: The average performance (dashed lines) of various durations of infant-
initiated smiles vs. the empirical probability (dots) that the infant selects a smile
duration. Each plot corresponds to a different possible infant preference over joint
smile configurations.
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of facial behaviors. Additionally, the robot’s body is pneumatically actuated al-

lowing for the production of smooth human-like movements. In this study, we

programmed the robot to simulate the interactions that occurred in the mother-

infant data.

3.4.1 Robot Sensorimotor Behavior

The robot tracked the participant’s face using a combination of saccadic eye

movements and head turns. While tracking the face, the robot was programmed

to perform vergence eye movements so that the angle between the two eyes was

appropriate for the viewing distance. Periodically, Diego would flap his arms,

which subjectively gave the appearance of an expression of delight. The form of

these flapping motions was derived from a motion-capture database of mother-

infant interactions [64]. We programmed Diego to perform an open-mouthed smile

known in the infancy literature as a “play smile” [46] (see Figure 3.8). Diego would

randomly blink at an average frequency of 0.5 Hz. Since infants do not spend the

entire face-to-face interaction gazing at their mothers, but occasionally look away,

we programmed the robot to periodically rotate about its torso to either the far

right or the far left. In coordination with the body movement, the robot shifted

its gaze to give the appearance of being interested in an object to the side of the

participant. A selection of the robot’s behavior is shown in Figure 3.8.

We programmed four robot controllers that specified different patterns of

body and facial movements in response to the location and expression of the par-

ticipant’s face. Ultimately, we sought to determine how the choice of controller

affected participants’ opinions of the robot as well as their behavior when inter-

acting with the robot. Each controller tested had identical face-tracking, blinking,

and vergence as described above. The following four controllers were tested:

Infant: Look away behavior was generated at an average frequency of 1/20

Hz. When looking away, the robot looked back at the subject at an average

frequency of 1/3 Hz. Additionally, when the robot smiled, with 50% probability

the robot flapped its arms. The probability of the robot smiling was based on the

statistics of infant smiling from the longitudinal database.
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Infant Plus: Looking away and arm flapping were identical to the Infant

controller. The smile timing of this controller was identical to Infant with the

modification that the robot was more likely to modulate its expression to be the

same as the participant (elevated probability of matching of 50% per second).

This controller allowed us to test the effect of a more contingent smile policy on

the participants.

Replay: Diego’s look away behavior, arm movements, smiles, and blinks

were all matched to those recorded from the Infant controller interacting with the

previous participant. Thus, while the statistics of each behavior were identical to

the “Infant” condition, there was no contingency between the participant’s smiling

and the robot’s smiling. However, face-tracking remained contingent.

Mirror: We were interested in how a controller that was minimally random

and easily controllable would be perceived by the participants. The mirror con-

troller did not look away, and matched its smile to that of the participant. Each

time it smiled, the robot would also flap its arms.

In order to determine whether or not the participant was currently smiling

we employed CERT (the Computer Expression Recognition Toolbox) [33] which

provides automated realtime face detection and facial expression analysis from

video. The video signal used to extract this information came from two cameras,

one located in each of the robot’s eyes. In order to determine when a participant

changed from smile to not smile or not smile to smile, we detected when the

output of the smile detector had crossed a threshold (set to 0 for all participants)

for at least half a second (the half second threshold was used to make the robot’s

perceptions of the participant’s smile less sensitive to transient noise).

3.4.2 Procedure

Participants were recruited through the UC San Diego Psychology depart-

ment’s subject pool. All participants were undergraduates, and each received

course credit for participating in the experiment. Upon arriving at the lab, par-

ticipants were given the following written instructions:

Researchers at the Machine Perception Laboratory are design-
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ing a robot named “Diego San”. Diego San is just beginning
to learn how to interact with people. Diego San has the ability
to sense and respond to some of the same social cues that hu-
mans use to communicate with each other. Currently, Diego
San can see where people’s faces are and whether or not they
are smiling. He does not have any other perceptual abilities
(such as the ability to detect gestures or sounds). In this ex-
periment you will interact with Diego San for four 3-minute
sessions. During each session, Diego San will run a different
social interaction program. Each program specifies a different
pattern for how Diego responds to your actions. Following each
interaction, we will administer a questionnaire that asks you
to evaluate Diego San’s behavior during the previous 3-minute
interaction.

Diego was enclosed in a four-sided curtained enclosure to increase the par-

ticipant’s sense of privacy when interacting with the robot. The participant was

required to remain seated during the experiment and to remain at least 18 inches

from the robot at all times. The participant was seated in a chair with rolling

wheels that allowed them to move within the enclosure while remaining seated.

The participant interacted with each of the four robot controllers: infant, infant-

plus, replay, and mirror. The order of presentation of each controller was counter-

balanced to avoid order effects. Following each interaction, a questionnaire was

administered (see Dependent Measures).

3.4.3 Dependent Measures

Smiling of the participant was recorded for later analysis using CERT [33].

For simplicity, we defined smile as all times when the output of CERT’s smile de-

tector exceeded the threshold of 0. Specifically, we computed the total amount of

time spent in each of the four possible joint smile configurations of robot and partic-

ipant. Between sessions, we administered the Godspeed questionnaire, a standard

in the field of Human-Robot Interaction, to probe the participants’ opinions of

their preceding interaction with Diego. The questionnaire consisted of 21 5-point

Likert scale items (e.g. is the robot 1 - apathetic or 5 - responsive). In order to

assign a single number to how much a participant liked a particular controller, we
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Figure 3.8: Diego-San the robot used in this study. The robot can generate
life-like facial expressions as well as generate compliant and human-like motions
with its body. Diego’s perceptual capabilities were provided via computer vision
software operating on images delivered from cameras in its eyes. In the top row of
the figure is an example of the robot verging his eyes on a close face. In the second
row of pictures are two key frames from Diego’s arm-flapping behavior.
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summed their responses over the 21 5-point Likert scales.

3.4.4 Results

Thirty-two participants took part in the experiment. An ANOVA revealed

a significant effect of condition (p = .0007, F (2, 94) = 4.45) on overall rating after

controlling for a participant’s average rating across all conditions. Subsequent

paired t-tests revealed that mirror was rated higher than either infant (p = .036,

t(31) = 2.19) or replay (p = .006, t(31) = 2.96). Additionally, infant was rated

higher than replay (p = .027, t(31) = 2.32). We developed an ANCOVA model

to assess whether the time spent in each of the four smile configurations during

an episode was related to the participant’s rating of that episode. To this end

we performed separate correlations between rating and time spent in each of the

four possible smile configurations after partialing out the effect of participant. The

only significant correlation was between amount of time spent in mutual smile with

Diego and rating (R = .57, Pearson correlation, p = 1.4 × 10−9, t(94) = 6.72).

Thus, based on their responses, participants had the same intention that mothers

had when interacting with their infants (to draw their partner into a mutual smile).

This result helps explain why subject’s liked the mirror condition the most; in the

mirror condition the robot mechanistically responded to a participant’s smile with

a smile of its own, making achieving the intention of mutual smiling quite easy.

Next, we examined which of the four controllers elicited the most participant

smiling (see Figure 3.10). We report the results from the second half of the 3-

minute interaction because the first half often contained periods where the subject

was testing the affordances of the robot controller, however, the overall pattern of

results when using both halves is very similar. An ANOVA revealed a significant

effect of condition after controlling for a participant’s mean smile time across all

conditions (p = .000002, F (3, 126) = 11.045). Subsequent paired t-tests revealed

that participants smiled more to mirror than either infant plus (p = .0069, t(31) =

2.89, two-tailed) or replay (p = .00004, t(31) = 4.79, two-tailed). Importantly,

participants smiled more to infant than replay (p = .0041, t(31) = 3.10, two-

tailed). Thus, the contingency of the infant controller to the participant’s smiling
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Figure 3.9: The average participant rating of each of the four smile controllers.
Error bars represent standard errors. Significance between conditions was assessed
using pair-wise t-tests.

increased the total amount of participant smiling.

In the mother-infant interaction study we found that the timing of infant

smiling can be accurately predicted by ascribing infants the intention of maximizing

mother-only smiling. To investigate whether the human-robot interaction results

exhibited a similar trend, we analyzed the time spent in participant-only smiling

for each controller. The bottom plot of Figure 3.10 reveals that the duration

of participant-only smilaxing was longest for the infant controller. An ANOVA

revealed a significant effect of condition after controlling for the mean amount of

participant-only smiling across all conditions (p = .0000001, F (3, 126) = 13.57).

Subsequent paired t-tests revealed that the duration of participant-only smiling was

significantly longer for the infant controller than either mirror (p = .00004, t(31) =

4.78), infant-plus (p = .0037, t(31) = 3.14), or replay (p = .0107, t(31) = 2.72).

The temporal patterns of infant smiling are effective at achieving the intention

of partner-only smile, even when these timings are translated from the context of

mother-infant interaction to interaction between undergraduates and a robot.
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Figure 3.10: Top: the average duration of participant smiling for each of the four
controllers. Bottom: the average duration of participant-only smiling for each of
the four controllers. Error bars represent standard errors. Significance between
conditions was assessed using pair-wise t-tests.
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3.5 Discussion

Our results provide a principled computational account of the intentions

of early social interactions between mothers and their infants. The young age at

which infants are able to pursue intentional communication with the intent to en-

gender a particular social response (in this case a facial expression) from another

human is quite surprising. Moreover, the particular strategies that are implicated

in the pursuit of these intentions are not simple, but require subtle sensitivity

to the statistics of the smiling responses of mothers. Our findings suggest two

follow-up experiments to illuminate the causal processes behind the realization of

this intentional behavior. Firstly, if infants indeed have the intention of creating

mother-only smiling, perhaps we might find increased activation of the reward cen-

ters in the infant’s brain when viewing their mother’s smiling face. Secondly, if the

infants are shaping their smiling behavior in response to increasingly sophisticated

models of the statistics of mother-smile responses in various contexts, we may be

able to directly probe these expectations using a looking time paradigm [57].

The view of the infant as an intentional system can be applied to under-

standing mother-infant social interaction in atypical contexts. For instance, de-

pressed mothers exhibit less smiles and less contingency to their infants than non-

depressed mothers [19]. In response, their infants exhibit less smiling and generally

less positive affect [19]. This pattern of infant response to a less contingent mother

is predicted by our intentional model. Since infant smiles are not as effective a tool

for achieving the intention of mother-only smiling (due to lower contingency on

mother’s part) smiling will be exhibited less frequently by the infant. Another set-

ting in which the intentional stance may prove helpful is in examining the smiling

patterns of infants who are eventually diagnosed with Autism Spectrum Disorder

(ASD). If, as some have theorized [14], toddlers with ASD do not have the de-

sire (or intention) for reciprocal social interaction, perhaps our model will reveal

that infants who eventually develop ASD do not have the intention of maximizing

mother-only smile, thus providing an early diagnostic for ASD. Additionally, if

our model finds that the intention of ASD infants is to gain some other form of

stimulation, perhaps this knowledge could be used to design early interventions to
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help these infants in their social development.
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Chapter 4

Inverse Optimal Control and

Goal-based Imitation in

Continuous State, Action, and

Time

Abstract: We present an algorithm for inferring the intentions (or goals) of a

demonstrator from observations of its behavior. In contrast to existing approaches

that are tailored for the discrete-state Markov Decision Process, our approach

handles a rich class of continuous time, state, and action control problems. Our

approach to intention inference is computationally efficient and naturally allows

for online updating of the estimate of the demonstrator’s intention in response to

new observations. Our method handles uncertainty in a principled fashion by both

inferring distributions over possible intentions, rather than just point estimates,

and naturally handling the case when the system dynamics of the demonstrator are

not known exactly. We approach the problem of goal-imitation by showing that

even when the intention of the demonstrator cannot be uniquely identified (i.e. the

goal can only be constrained to lie on a manifold) that an imitator can synthesize

behavior that is optimal with respect to the demonstrator’s goal. We conclude

by providing extensions of our model to partially observable control problems,

52
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stochastic differential games, and control problems in discrete time with discrete

state and action spaces.

4.1 Introduction

Learning from demonstration (or Imitation Learning) is a powerful method

of skill acquisition in humans [41]. Due to the power of learning by imitation,

roboticists have sought [3] to develop computational methods that allow robots

to learn by observing humans performing a task. Loosely, one can categorize

existing approaches as either: seeking to imitate the surface characteristics of a

demonstrated behavior (mimicry) or seeking to imitate the goal of a demonstrated

behavior [61] (see [49] for a survey of this work). In order to better contrast the two

approaches, consider a robot watching a human walking across a narrow bridge.

The robot in this case uses wheels to locomote, thus determining how to mimic the

observed movements of the human’s legs is non-trivial. However, if we can infer

from the human’s movements that his goal is to translate his body from one side

of the bridge to the other without falling, then we can apply engineering methods

to synthesize behavior for the robot that is optimal for achieving this task. In this

case, the particular solution we construct will be tailored to the characteristics of

the robot’s sensors and actuators. We call this form of imitation goal imitation or

deep imitation. Here, we provide a method of deep imitation and goal inference

for continuous state, continuous action, and continuous time systems.

One approach to solving the problem of deep imitation is to perform the

following two steps:

1. Infer the performance function (or intention) of the demonstrator from its

behavior.

2. Compute an optimal controller for the imitator with respect to the perfor-

mance function inferred in step 1.

To perform the second step, one can apply one of the numerous algorithms from the

field of stochastic optimal control (e.g. dynamic programming [7] or reinforcement
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learning [54]) for computing optimal controllers for a given performance function

(this is known as the forward control problem, see Chapter 2). The problem posed

in the first step is known as the Inverse Optimal Control problem and was originally

formulated by Kalman [28]. However, a complication arises. It is known (see [44]

for example) that for many control problems, a given policy of the demonstrator

is not optimal with respect to only a single performance function. Therefore, the

problem of computing the performance function of an agent from behavior may

be underconstrained. Here, we provide two approaches for dealing with this is-

sue. Firstly, in the case when we desire an explicit estimate of the demonstrator’s

performance function, we show that prior information about the agent’s perfor-

mance function can be leveraged to make the problem of goal-inference well-posed.

Secondly, if an explicit estimate of the performance function is not required, but

rather the synthesis of optimal imitative behavior, then by considering the two

steps identified above jointly the lack of a unique performance function that is

optimal for the demonstrator’s behavior does not preclude deep imitation. We

achieve this result by showing that for a large class of continuous systems, any

performance function that renders the demonstrator’s behavior optimal leads to

the same prescribed optimal behavior for the imitator.

Algorithms for inverse optimal control are not limited in application to deep

imitation. As we saw in Chapter 3, inverse optimal control methods can be used

as an effective means for understanding natural behavior. Here, our method of in-

verse optimal control applies to a class of continuous systems of considerable inter-

est in the study of biological and mechanical motor control and social interaction.

Just as we used the framework of discrete optimal control to formalize Dennett’s

intentional stance in Chapter 3, the techniques presented here formalize the inten-

tional stance for continuous systems. Despite the richness of the class of control

problems that we consider, our solution to the inverse optimal control problem

is quite straightforward. This simplicity allows us to consider several extensions

not possible with previous methods. Firstly, our technique yields an estimate of

the uncertainty of the inferred performance function rather than a point estimate.

Secondly, we show how to use the uncertainty of the performance function to influ-
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ence the generation of deep imitative behavior. Thirdly, we demonstrate that our

method can handle uncertainty in the dynamical model of the demonstrator. We

extend our method to partially observable control problems, the game-theoretic

setting, and to a particular variant of discrete control. In order to help inspire

future applications of our framework, we provide three examples of how the frame-

work developed in this chapter could be used to answer questions of considerable

interest in the study social interaction.

4.2 Related Work

In recent years, the inverse optimal control problem for discrete-time,

discrete-state, and discrete-action Markov Decision Processes (MDPs) has received

a great deal of attention from the machine learning community [1, 47, 55, 30, 42,

44]. In this setting, algorithms must make inferences about a demonstrator’s per-

formance function from state-action trajectories sampled from the demonstrator’s

optimal policy. While these approaches have achieved impressive results [30, 43],

they scale poorly to problems that are more naturally formulated in continuous

state, continuous action, and continuous time (such as the ones considered later in

the chapter).

Approaches to inverse optimal control typically maximize one of two ob-

jectives. The first objective is to produce a performance function that makes the

action choices of the demonstrator optimal compared to alternative actions. Un-

derlying these formulations is an objective function that computes a score (e.g.

log-loss or 0 − 1 loss) between the optimal policy prescribed by a performance

function and the observed behavior of the agent. Next, this objective function is

either maximized to yield a point estimate of the performance function [44, 42, 15],

or used as a likelihood function for a Markov Chain Monte Carlo (MCMC) based

sampling procedure [47]. These approaches are sometimes called policy matching

approaches. The second objective, also known as apprenticeship learning, is to

produce a policy that achieves similar performance as the policy of the demon-

strator under the assumption that the performance function of the demonstrator
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[1, 55] is linear in some known features. In this formulation there is no guarantee

that the produced policy will behave in a similar fashion to the demonstrator, only

that its expected performance over the longterm will be similar. Our formulation

bears similarities to both of these approaches.

Our method for performance function inference is based on policy matching

in that our inference procedure maximizes a matching score between the demon-

strator’s actions and the optimal policy dictated by a particular performance func-

tion. However, our approach is also similar to apprenticeship learning in that we

show that our formulation can be used to produce a policy that is optimal with

respect to the inferred demonstrator’s performance function even when we cannot

uniquely determine this performance function. An additional benefit of our ap-

proach is that it allows for apprenticeship learning for producing optimal imitative

behavior for an agent with different motor characteristics than the demonstrator,

something that is not handled by other approaches.

Only a limited number of techniques have been developed to handle the

case of inverse optimal control for non-linear continuous systems. Our work is

most similar to that of Li et. al. [32]. We each independently came up with the

same maximum likelihood estimator for the value function of the demonstrator that

allows for the computation of the performance function in closed-form. However,

in contrast to [32] we provide a multitude of extensions for the inverse optimal

control problem as well as treating the problem of synthesizing optimal imitative

behavior. In addition, a second approach to inverse optimal control for continuous

systems was independently developed by both [27] and [2]. While our algorithm

is guaranteed to find a performance function that makes the behavior globally

optimal, these other approaches [27, 2] only guarantee that the behavior is locally

optimal for the performance function. Finally, Ziebart et. al. [66] provided an

approach for inverse optimal control in Bayesian games, however, the technique

did not handle the range of control problems considered in our treatment of the

game-theoretic setting.
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4.3 Problem Formulation and Basic Approach

We study the finite-horizon continuous time optimal control problem (see

Chapter 2 for more details). We observe a series of trajectories sampled from an

agent (referred to for the rest of this chapter as the “demonstrator”) interacting

with a dynamical system. Each trajectory consists of the sequence of states visited

and actions performed during the time interval [0, T ]. While these state-action

trajectories are continuous functions through time, we observe samples from these

trajectories at discrete timepoints. We define the list of time indices at which

we sample the state-action trajectories as T = (0 = t1 < t2 < . . . < tnk = T ). For

simplicity of exposition we assume that the difference between any two consecutive

elements from T is δt, however, this is not required.

Let D be a set of tuples with each di ∈ D consisting of a state, xi, the control

signal executed by the demonstrator, ui, the time at which the sample was taken,

ti ∈ T , and a trajectory identifier, si, which specifies which observed trajectory the

sample was taken from. Additionally, we assume that the dynamics of the observed

system follow Equation 2.12. In addition to D, we assume that we know the passive

dynamics function, a(·), controlled dynamics gain matrix function, b(·), and the

noise gain function, c(·), of the demonstrator. In subsequent sections we will relax

the requirement that a(·) and c(·) be known exactly (we suggest possible methods

to handle uncertainty in b(·), but do not solve the problem in this dissertation).

Further, we assume that the performance rate, rt(x, u) consists of the sum of a

quadratic control cost of the form 1
2
u>qu (as described in Section 2.4) with known

matrix q, and an arbitrary function of the state. Optionally, the matrix q can

depend on time and/or the state. Adding dependence of the matrix q on the state

allows for non-quadratic control costs by approximating the control cost locally

using its second-order Taylor expansion.

The goal of the algorithm will be to convert the system dynamics model

and the observed trajectories from the demonstrator, D, into an estimate of the

performance function under which the action choices in D are optimal. The core

of the algorithm is based on the relationship between the optimal control signal

and the optimal value function for dynamical systems that follow Equation 2.12.
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Recall from the Chapter 2 that the optimal control for this class of systems is given

by:

u∗t (x) = q−1b(x)>∇xvt(x) (4.1)

We do not know the value function, vt, a priori, however, if the action choices

in D are optimal, then they should approximately satisfy the preceding equation.

We can use this fact as an optimization criterion for inferring the demonstrator’s

value function (we will return to this step in more detail shortly, however, for now

assume that vt can be determined). Once the value function, vt, has been inferred,

the state-dependent component of the performance rate, ρt can be computed by

rearranging terms in Equation 2.18:

ρt(x) =
1

τ
vt(x)−∇tvt(x)− 1

2
∇xvt(x)>b(x)q−1b(x)>∇xvt(x)− a(x)>∇xvt(x)

−1

2
trace

(
c(x)c(x)>∇2

xxvt(x)
)

(4.2)

Since everything on the right-hand side is known, this equation yields a closed-

form expression for the demonstrator’s performance function. In order to estimate

vt from the demonstrator’s behavior, we model the likelihood of an action choice

given the value function as a noisy realization of the optimal action given by

Equation 4.1:

ut(x) = q−1b(x)>∇xvt(x) + ε, ε ∼ N(0,Σu) (4.3)

Where ε is an m-dimensional vector of 0-mean gaussian noise with known covari-

ance, Σu. The source of this noise is assumed to be due to the demonstrator

occasionally deviating from the optimal action prescribed by a particular value

function.

Since the elements of D are likely to contain data from the same trajectory

sampled close together in time, it is unreasonable to assume that the noise vectors

for each element of D are uncorrelated. For instance, consider recording the force

exerted by a human bicep at a sampling rate of 1, 000Hz. If the bicep is mistakenly

contracted in an unplanned way at t = .401s then it is more likely to contain a

similar unplanned contraction at t = .402s. Therefore, we assume we are given a
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kernel function, ω, that maps two elements di, dj ∈ D to a matrix Σdi,dj ∈ R2m×2m

which specifies the covariance structure between the noise values εi and εj. For

example, the kernel function ω might map di and dj to

[
Σu 0

0 Σu

]
(indicating that

the noise for these two observations is uncorrelated) except in the case that the

elements were recorded during the same trajectory close together in time.

We now assume, as we did Chapter 2, that the value function at time t ∈ T
is represented by a linear combination of known basis functions with unknown

weights:

vt(x,wt) =
d∑
i=1

φt,i(x)wt,i (4.4)

Plugging the parameterization in Equation 4.4 into Equation 4.5 yields the fol-

lowing relationship between the observed control signals and the basis functions

weights:

ut(x) = q−1b(x)>
d∑
i=1

∇xφt,i(x)wt,i + ε (4.5)

Given this likelihood model, we can infer a distribution over the unknown weights

using Bayesian Linear Regression [9]. To accomplish this, we first define some

additional notation to refer to the elements of D sampled at time t as Dt. Next

we form the design matrix at time t as:

Xt =


q−1b(xt1)

>∇xφt,1(x
t
1) · · · q−1b(xt1)

>∇xφt,d(x
t
1)

...
. . .

...

q−1b(xt|Dt|)
>∇xφt,1(x

t
|Dt|) · · · q−1b(xt|Dt|)

>∇xφt,d(x
t
|Dt|)


The target vector for the linear regression at time t is defined as:

gt =


ut1
...

ut|Dt|


Let g be a vector consisting of gt stacked ∀t ∈ T . Our goal will be to infer

the vector w which consists of the wt stacked ∀t ∈ T . To this end, we define the



60

design matrix for the regression, X, as a block diagonal matrix formed from the

matrices Xt,∀t ∈ T . We construct the noise covariance matrix Ω using the kernel

function, ω. In order to apply Bayesian linear regression, we also specify a Gaussian

prior over the vector of basis weights, w, consisting of a prior mean µ0 and prior

covariance Σ0. The covariance matrix, Σ0, can be used to specify the uncertainty

in individual weights or to enforce smoothness of the value function weights (and

therefore the value function itself) over time. Once the Gaussian prior, the design

matrix, the target vector, and noise covariance matrix are specified, the posterior

mean and covariance for the basis weights can be computed in closed form using

the well-known Bayesian linear regression formula (see [9] for more details):

µ =
(
X>Ω−1X + Σ−10

)−1 (
Σ−10 µ0 +X>Ω−1g

)
(4.6)

Σ =
(
X>Ω−1X + Σ−10

)−1
(4.7)

A maximum a posteriori (MAP) estimate of the performance rate at time t with

t 6= T can be obtained by plugging the basis weights µ into Equation 4.4 to

compute the value function and then substituting the resulting value function into

Equation 4.2. Note that in general there will be no observations in D from the

terminal time since in the finite-horizon control setting the agent does not perform

an action at the terminal time. The only information that we can leverage to

compute the terminal value function (and thus the terminal performance function)

is that the value function tends to be smooth over time. Therefore, in order to

get a sensible estimate of the value function at the terminal time, the covariance

structure of the Gaussian prior over basis weights should encode that the basis

weights for the terminal value function have significantly high-positive covariance

with those from the immediately preceding time index.

Of particular note is that computing the performance function of the demon-

strator requires solving a single linear regression problem. This is computationally

easier than solving an instance of the forward optimal control problem using the

collocation methods described in Chapter 2 (which required either solving a sin-

gle quadratic regression problem or a series of linear regression problems). The

relative efficiency of the inverse vs. the forward problem compares favorably with

algorithms for the discrete-state, discrete-action, and discrete-time inverse opti-
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mal control problem which typically require solving many instances of the forward

control problem [1, 47, 55, 30, 42, 44]. In Section 4.13 we show how to bring

the efficiency of our approach for the continuous control problem to the discrete

problem.

4.3.1 Online Inference

Since the inference of the posterior distribution over the value function of the

demonstrator is accomplished using linear regression, the estimate of this posterior

distribution can be updated efficiently without requiring the full computation of

the pseudo-inverse. This online update can be performed using the online linear

regression method based on the Woodbury-Matrix inversion lemma [9].

4.3.2 The Role of Inverse Dynamical Models

In many cases the assumption that we observe both the states and the

actions of the demonstrator may be unrealistic. For instance when analyzing bio-

logical or mechanical motion, the control signals will typically consist of generalized

forces applied by either the muscles of a biological agent or motors in the case of a

mechanical system such as a robot. If the observer is only able to directly observe

the state of the demonstrator, rather than these forces, the forces must be inferred

in order to apply our algorithm. In order to compute the control signal at time t

we model the distribution of the next state as:

Xt+δt ≈ Xt + a(Xt)δt+ b(Xt)Utδt + c(Xt)
√
δtZt (4.8)

Where Zt is a vector of values drawn from a standard normal distribution. Equa-

tion 4.8 is an approximation rather than an equality because a(·), b(·), Ut, and c(·)
might not be constant over the time interval [t, t+δt]. However, given a sufficiently

small δt this assumption will hold true. Given the values of two subsequent state

measurements xt and xt+δt, the value of ut can be computed from the preceding

equation using a weighted linear regression where the target variables are given by

xt+δt−xt−a(xt)δt, the design matrix is given by 1
δt
b(xt) and the covariance matrix
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for the errors in the dependent variables is given by 1
δt
c(xt)c(xt)

>. The mean and

covariance for the resulting estimate of the control signal,ut, is given by:

µut =
1

δt

(
b(xt)

> (c(xt)c(xt)>)−1 b(xt))−1 b(xt)> (c(xt)c(xt)>)−1
× (xt+δt − xt − a(xt)δt) (4.9)

Σut =
1

δt

(
b(xt)

> (c(xt)c(xt)>)−1 b(xt))−1 (4.10)

If we assume independence of noise in the demonstrator’s selection of the optimal

action and the noise in our estimate of the action, then we can consider both types

of uncertainties. This is accomplished by augmenting the noise covariance matrix

Ω by adding a block diagonal matrix containing the covariance matrix computed

using Equation 4.10 for each estimated action.

4.4 Computing the Uncertainty of the Perfor-

mance Function

It is difficult to obtain a measure of uncertainty of the performance func-

tion with other techniques for inverse optimal control. Previous approaches either

produce a point estimate of the performance function [44] (which gives no sense

of uncertainty), or else require an expensive Markov Chain Monte Carlo (MCMC)

procedure to obtain the samples from the distribution from which the uncertainty

can be estimated [47]. The simplicity of our formulation of inverse optimal control

allows us to compute the variance (a measure of uncertainty) of the performance

function in closed-form. In other words, our algorithm knows when it is certain

about the value of the performance function at a particular state and time and

knows when it is uncertain, and can determine its own uncertainty in an efficient

manner.

Since our algorithm for inverse optimal control produces a Gaussian pos-

terior distribution over the value function of the demonstrator, we can compute

the mean and variance of the induced distribution over the performance function

in closed-form using standard identities. In order to simplify our derivation, we
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define:

λt,i(x) = trace
(
c(x)c(x)>∇2

xxφt,i(x)
)

(4.11)

Which allows us to rewrite trace
(
c(x)c(x)>∇2

xxvt(x)
)

as λt(x)>wt. Next, we

rewrite the expression for the performance by collecting terms linear and quadratic

in wt.

ρt(x) =

(
1

τ
φt(x)− φt(x)

δt
− Jφt(x)>a(x)− 1

2
λt(x)

)>
wt

+

(
1

δt
φt−δt(x)

)>
wt−δt −

1

2
wtJ

>
φtb(x)q−1b(x)>Jφtwt (4.12)

= νt(x)>wt + ht−δt(x)>wt−δt + w>t M(x)wt (4.13)

νt(x) =
1

τ
φt(x)− φt(x)

δt
− Jφt(x)>a(x)− 1

2
λt(x) (4.14)

ht−δt(x) =
1

δt
φt−δt(x) (4.15)

M(x) = −1

2
Jφt(x)>b(x)q−1b(x)>Jφt(x) (4.16)

E[ρt(x)] = νt(x)>µt + ht−δt(x)>µt−δt + µ>t M(x)µt + trace(M(x)Σt)(4.17)

Where we plugged in a finite-difference approximation of the temporal derivative

of the value function, used linearity of expectations, and used the identity that the

expected value of a quadratic form x>Ax with x ∼ N(µ,Σ) is µ>Aµ+ trace(AΣ).

Next, we start from Equation 4.13 to compute the variance of the performance
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function.

V ar[ρt(x)] = V ar
[
νt(x)>wt

]
+ V ar

[
ht−δt(x)>wt−δt

]
+ V ar

[
w>t M(x)wt

]
+2Cov

[
νt(x)>wt, ht−δt(x)>wt−δt

]
+2Cov

[
νt(x)>wt, w

>
t M(x)wt

]
+2Cov

[
ht−δt(x)>wt−δt , w

>
t M(x)wt

]
(4.18)

= ν(x)>Σtν(x) + h>t−δt(x)Σt−δtht−δt(x)

+2trace [M(x)ΣtM(x)Σt] + 4µ>t M(x)ΣtM(x)µt

+2ν(x)>Σt,t−δtht−δt(x)

+2ν(x)>ΣtM(x)µt

+2h>t−δt(x)Σt−δt,tM(x)µt (4.19)

Where Σt−δt,t is the covariance matrix between the basis weights at time t−δt and

time t. To achieve our result we applied the following identities for x ∼ N(µ,Σ):

V ar[x>Ax] = 2trace [AΣAΣ] + 4µ>AΣAµ, and Cov
[
a>x, x>Bx

]
= 2a>ΣBµ.

4.5 Incorporating Uncertainty in the Dynamics

The assumption that the system dynamics a(·), b(·), and c(·) are known to

the observer may be unrealistic. For typical mechanical systems these functions

can be quite complex and depend on moments of inertia and Coriollis forces that

require substantial knowledge of the characteristics of the motor system of the

demonstrator. Here we work out how to handle uncertainty in a(·) and c(·). We

discuss the additional difficulties presented by allowing for uncertainty in b(·) and

suggest possible solutions.

4.5.1 Uncertainty in the Passive Dynamics

In this case, we do not know exactly the passive dynamics of the demonstra-

tor, but rather that we have a distribution over the function a(x) ∼ N(µa(x),Σa(x))

for all states x. The actions of the demonstrator are conditionally independent of
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the passive dynamics given its value function. To see this we note that Equa-

tion 4.1 does not contain the function a(·). Therefore we proceed to estimate the

weights of the basis functions as in the case where we have full certainty about the

passive dynamics. The expression for the mean performance value for a particular

state given in Equation 4.17 is identical except with a(x) substituted for its mean

value:

E[ρt(x)] = E
[
νt(x)>wt

]
+ ht−δt(x)>µt−δt + µ>t M(x)µt + trace(M(x)Σt)

= E
[
−a(x)>Jφt(x)wt

]
+

(
1

τ
φt(x)− φt(x)

δt
− 1

2
λt(x)

)>
µt

+ht−δt(x)>µt−δt + µ>t M(x)µt + trace(M(x)Σt)

= −µa(x)>Jφt(x)µt +

(
1

τ
φt(x)− φt(x)

δt
− 1

2
λt(x)

)>
µt

+ht−δt(x)>µt−δt + µ>t M(x)µt + trace(M(x)Σt)

=

(
1

τ
φt(x)− φt(x)

δt
− Jφt(x)>µa(x)− 1

2
λt(x)

)>
µt

+ht−δt(x)>µt−δt + µ>t M(x)µt + trace(M(x)Σt) (4.20)

This completes our proof since we have arrived at the original expression for the

mean performance function except with the mean value of a(x) substituted.

4.5.2 Uncertainty in the Controlled Dynamics

This case of handling uncertainty in the controlled dynamics matrix, b(·),
is considerably more difficult and is currently unsolved. To see why, note that in

contrast to the relative simplicity of handling uncertainty in the passive dynam-

ics, the controlled dynamics matrix appears in Equation 4.1 causing considerable

complications. The simple linear regression to compute the distribution over the

basis function weights no longer applies. The reason for this is that ordinary least

squares only allows for errors in the response variables and not in the inputs. A

solution based on an error in variables model [22] or some sort of particle based

sampling method are probably the most promising directions for achieving a solu-

tion.
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4.5.3 Uncertainty in the Noise Gain Matrix

Handling uncertainty in c(·) follows much the same logic as uncertainty in

a(·). Since c(·) does not appear in Equation 4.1 the posterior Gaussian distribution

over the basis weights given the observed actions of the demonstrator is unchanged.

We note that the expression for ρt(x) only depends on c(x) through the vector-

valued function λt(x). We assume in this case that we have a multivariate normal

distribution over the elements of c(x). Additionally, we use the notation ci(x) to

refer to the ith column of c(x) we use nc to refer to the number of columns in

c(x). We use the notation µci to refer to the mean of ci(x) and Σci,cj to refer to

the covariance between ci(x) and cj(x).

λt,i(x) = trace
(
c(x)c(x)>∇2

xxφt,i(x)
)

= trace
(
c(x)>∇2

xxφt,i(x)c(x)
)

=
nc∑
i=1

ci(x)>∇2
xxφt,i(x)ci(x)

Next, we compute how the distribution of λt will impact the mean estimate of the

performance function:

E[ρt(x)] = E
[
νt(x)>wt

]
+ ht−δt(x)>µt−δt + µ>t M(x)µt + trace(M(x)Σt)

=

(
1

τ
φt(x)− φt(x)

δt
− Jφt(x)>a(x)

)>
µt + E

[
1

2
λt(x)>wt

]
+ht−δt(x)>µt−δt + µ>t M(x)µt + trace(M(x)Σt)

=

(
1

τ
φt(x)− φt(x)

δt
− Jφt(x)>a(x)

)>
µt + E

[
1

2
λt(x)>

]
E [wt]

+Cov

[
1

2
λt(x), wt

]
+ ht−δt(x)>µt−δt + µ>t M(x)µt + trace(M(x)Σt)

=

(
1

τ
φt(x)− φt(x)

δt
− Jφt(x)>a(x)

)>
µt +

1

2
E [λt(x)]> µt

+ht−δt(x)>µt−δt + µ>t M(x)µt + trace(M(x)Σt) (4.21)

E [λt,i(x)] =
nc∑
i=1

(
trace(∇xxφt,i(x)Σci,ci(x)) + µci(x)>∇xxφt,i(x)µci(x)

)
Note that we can handle uncertainty in both a(·) and c(·) simultaneously since

there are no terms involving products of these two functions.



67

4.6 Extension to Partially Observable Problems

Next, we consider the problem of determining a performance function for a

demonstrator controlling a dynamical system where the state at time t, xt, is only

partially observable. In this setting the demonstrator must base its decisions on

sequences of noisy observations that indirectly reflect the state of the system.

Consider an agent that must control a system with the following system

and observation dynamics:

dXt = (a(Xt) + b(Xt)Ut) dt+ CdBt (4.22)

dZt = o(Xt)dt+DdB′t (4.23)

Where C and D are known matrices that are constant with respect to the state

(but can optionally depend on time) and specify the gains for the Brownian motion

processes dB and dB′. Zt is a random process specifying an observation at time

t. In comparison with the fully observable case we do not allow the noise in the

state dynamics to be state-dependent, however, the deterministic component of

the state dynamics is not restricted. Here, we assume that the agent only has

access to the observation process and not the state process.

Similarly to the fully-observable case, we assume that the agent is trying to

maximize some state-dependent performance function over time with a quadratic

cost on the control signal (if the control cost is not quadratic, then we can approx-

imate it locally using its second-order Taylor approximation). Processes such as

this are known as continuous time Partially Observable Markov Decision Processes

(POMDPs). For any POMDP, it can be shown that the distribution of the under-

lying system state, xt, conditioned on the sequence of observations up to time t is

sufficient for selecting the optimal control signal at time t. In general, for processes

with system and observation dynamics described by Equations 4.22 and 4.23 re-

spectively, it is not easy to maintain in a compact form the exact distribution of

states conditioned on the previous observations. Here, we assume that the demon-

strator represents the distribution over the underlying system state using a single

Gaussian that is updated according to the Continuous Time Extended Kalman

Filter (also known as the Extended Kalman-Bucy filter). For a detailed treatment
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of the Extended Kalman-Bucy filter see [24]. The basic idea of this filter is to

linearize the observation and system dynamics about the current mean estimate

of the state, and then apply the standard Kalman-Bucy update equations.

The assumption that the demonstrator updates its beliefs according to the

Extended Kalman-Bucy filter allows us to reformulate the partially observable

control problem in Equation 4.23 as a fully observable one. The state of the

system at time t, xt, is modified to contain the mean and covariance matrix of a

Gaussian estimate of the underlying system state. We use the notation X ′t to refer

to a random vector specifying the demonstrator’s belief about the true underlying

state of the system consisting of the mean, µst , and covariance, Σs
t , of a Gaussian

distribution over the underlying state:

x′t =

[
µst

vec(Σs
t)

]

Where vec is a function that vectorizes the input matrix column-wise. The evolu-

tion of the augmented state can now be described by the following fully observable

stochastic process:

d

[
µst

vec(Σs
t)

]
=

[
a(µst)

vec
(
sym(Ja(µ

s
t)
>Σs

t) + CC> − kt(x′t)kt(x′t)>
)] dt

+

[
b(µst)

vec (sym(Jb1(µ
s
t)Σ

s
t)) . . . vec (sym(Jbm(µst)Σ

s
t))

]
Utdt

+

[
kt(x

′
t)o(µ

s
t)
−1D

0

]
dBt (4.24)

kt(x
′
t) = Σs

tJa(µ
s
t)
> (o(µst)o(µst)>)−1 o(µst) (4.25)

sym(x) = x+ x> (4.26)

Where Ja is the Jacobian of a(·) with respect to the state and Jbi is the Jacobian

of the ith column of the control gain matrix function b(·) with respect to the

state. Equation 4.24 specifies a fully observable system with dynamics following

the same form as we have treated earlier in the chapter. Thus, the same methods
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for computing the perfrormance function and the uncertainty of the performance

function for fully observable processes can be applied to this case.

4.7 Issues of Identifiability of the Performance

Function

Depending on the particular characteristics of the observed dynamical sys-

tem, independently of the number of trajectories that we observe from the demon-

strator, it may not be possible to uniquely determine the demonstrator’s perfor-

mance function. To see why this is the case, consider a minimalistic example of

a demonstrator controlling a point mass in 1-dimension. The state-space of the

system is x ∈ R2 where the first element of x specifies the position, θ, of the point

mass and the second specifies its velocity, θ̇. The control signal, u ∈ R, specifies a

force exerted on the point mass. Additionally, we make our standard assumption

that the agent pays a cost proportional to the square of the force exerted on the

mass. For simplicity of exposition, we assume that the problem is deterministic

(i.e. c(x) = 0,∀x ∈ R2). The dynamics of the system can be written as follows:

dXt = (a(Xt) + b(Xt)Ut) dt (4.27)

d

[
θ

θ̇

]
=

[
θ̇

0

]
dt+

[
0

1
m

]
Utdt (4.28)

We can determine the optimal action of the agent given its value function by

plugging in the system dynamics to Equation 4.1.

u?t (x) = q−1

[
0

1
m

]> [
∇θvt(x)

∇θ̇vt(x)

]

=
1

qm
∇θ̇vt(x) (4.29)

Of particular importance is that optimal control signal u?t (x) is unaffected by

∇θvt(x). Therefore, we are free to choose the value of ∇θvt(x) arbitrarily without

affecting the goodness of fit of the value function to the demonstrator’s action

choices. In particular, given a value function that maximizes the goodness of fit to
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the demonstrator actions, v?t , we can create a new value function v?
′
t (x) = v?t (x) +

st(θ), where st is an arbitrary time-dependent function of θ. Since ∇θ̇v
?′
t (x) =

∇θ̇v
?
t (x) + 0 = ∇θ̇v

?
t (x), we can guarantee that v?

′
t will be as good a fit to the

demonstrator’s action choices as v?t . The performance function estimate for the

agent can be determined from Equation 4.2.

ρt(x) =
1

τ
vt(x)−∇tvt(x)− 1

2
∇xvt(x)>b(x)q−1b(x)>∇xvt(x)− a(x)>∇xvt(x)

=
1

τ
(v?t (x) + st(θ))−∇t (v?t (x) + st(θ))−

1

2

(
1

qm

∂v?t (x)

∂θ̇

)2

−θ̇ (∇θv
?
t (x) +∇θst(θ)) (4.30)

Therefore, different choices for st will lead to different performance functions for

the demonstrator even though each will be an equally valid explanation of the

demonstrator’s behavior. In the next section, we will discuss how to leverage prior

knowledge about the structure of the performance function of the demonstrator to

overcome this problem.

4.8 Incorporating Prior Knowledge About the

Performance Function

Next, we propose two methods for overcoming the performance function

identifiability issues described in the previous section. Both methods rely on lever-

aging prior knowledge concerning features that are likely to be implicated in the

demonstrator’s performance function. We use these features as a regularizer for

inferring the demonstrator’s value function. There are two approaches to achiev-

ing this. The first method is to fit the demonstrator’s value function in two steps.

In step 1 we choose a value function that maximizes the goodness of fit to the

demonstrator’s action choices. In step 2 we construct an additional function that

when added to the value function from step 1 does not change the demonstrator’s

optimal actions, but instead maximizes the closeness of the demonstrator’s perfor-

mance function to a linear combination of the known performance features. The

second method involves performing steps 1 and 2 jointly. This formulation allows
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for a tradeoff between goodness of fit to the observed action choices and parsimony

with the performance features.

We now assume that in addition to the basis functions for approximating the

value function of the agent, φt,i, we are also given a set of performance features, αt,i.

Additionally, we will use the notation αt(x) to refer to the vector of performance

features evaluated at the state x. We assume that performance functions that can

be well-represented by a linear combination of these performance features are more

likely goals for the demonstrator.

4.8.1 Method 1

Here, we assume that we are given features, ζt,i, to approximate a secondary

value function for the demonstrator. In contrast to the features for approximating

the primary value function, we require that:

q−1b(x)>∇xζt,i(x) = 0,∀t ∈ [0, T ], ∀x ∈ Rn (4.31)

If the preceding equation is satisfied, we can construct a new value function v′t by

adding an arbitrary function vt and any linear combination of the features, ζt,i,

without changing the prescribed optimal actions of the value function vt.

u?t (x) = q−1b(x)>∇x

(
vt(x) +

∑
j

wζ,t,jζt,j(x)

)
= q−1b(x)>∇xvt(x) +

∑
j

wζ,t,jq
−1b(x)>∇xζt,j(x)

= q−1b(x)>vt(x)

Let vt be a value function that optimally predicts the demonstrator’s actions com-

puted using the procedure in Section 4.3. Our goal is now to compute weights,

wζ,t,i, for each basis function ζt,i. The final value function will be given by v′t(x) =

vt(x) + ζt(x)>wζ,t where we use ζt(x) to refer to the vector valued function of the

basis functions given by ζt,i. The final estimate of the performance function will

be determined by plugging v′t(x) into Equation 4.2. We assume that we are given

a set of states xt for each time index t ∈ T to use to fit the weights wζ . These

states could be the same as the states in which the demonstrator was observed, or
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could be selected using another criterion. We determine the optimal basis weights,

wζ according to the following equation:

w?ζ = arg min
wζ

κ(vt, wζ) (4.32)

κ(v, wζ) = min
wα

{ ∑
t∈T \T

∑
x∈xt

(
αt(x)>wα,t

−
(

1

τ
vt(x) +

1

τ
ζt(x)>wζ,t −∇tvt(x)

−ζt+δt(x)>wζ,t+δt − ζ>t (x)wζ,t
δt

−1

2
∇xvt(x)>b(x)q−1b(x)>∇xvt(x)

−a(x)>∇xvt(x)− a(x)>Jζ,t(x)wζ,t

−1

2
trace

(
c(x)c(x)>∇2

xxvt(x)
)

−1

2
trace

(
c(x)c(x)>

∑
j

∇2
xxζt,j(x)wζ,t,j

))2

+
∑
x∈xT

(
αT (x)>wα,T −

(
vT (x) + ζT (x)>wζ,T

))2}
(4.33)

In the objective function we separated the terminal time T from other time indices

due to the differing structure of the HJB equation for this time index. Also,

note that since v is considered fixed for this optimization, the only unknowns in

the optimization problem are the weights wα and wζ which only appear linearly

within the squared objective function. Thus, the optimization in Equation 4.33

is an Ordinary Least-Squares (OLS) problem and can be solved with standard

methods.

In general the posterior distribution over the value function v and the basis

weights wα will not be jointly Gaussian. In order to deal with this problem one

can compute the Hessian of the objective function given in Equation 4.34 and

apply LaPlace’s approximation [9] to obtain a Gaussian estimate of the posterior

distribution over the basis weights. If one only wishes to determine the variance of

the performance function, this likely can be done in closed form. To see this, note

that the solution to the linear regression problem will involve multiplying a fixed

pseudo-inverse with a target vector that changes depending on the demonstrator’s
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value function either quadratically or linearly. Since the posterior distribution

over the demonstrator’s value function, vt, is Gaussian, the estimate of wζ will be

a linear combination of linear and quadratic forms in vt and the variance of this

linear combination can be computed using techniques similar to Section 4.4. We

leave the computation of the variance of the performance function in this setting

as future work.

4.8.2 Method 2

The first method for incorporating prior knowledge of the performance

structure allows us to modify the performance function estimate provided that

we don’t worsen the fit to the demonstrator’s action choices. However, sometimes

it may be preferable to allow for a tradeoff between making the demonstrator’s

action choices fit less well and making the estimated performance function closer

to one from the linearly parameterized family. There are two principal reasons for

this. First, if the demonstrator’s actions are somewhat noisy, then incorporating

prior information about the performance structure may increase robustness. Sec-

ond, if the features used to represent the value function are local, as is the case

with the features described later in Section 4.11 (meaning their influence is con-

fined to a local region of the state space), then we will have no way to estimate

the performance function of the agent in parts of the state space that we have yet

to observe demonstrator behavior.

In order to balance fitting the demonstrator’s actions well and having a

parsimonious performance function, we simply add the objective function from

Method 1 multiplied by a weight term with the original objective function (i.e.

when we do not enforce prior information).

w? = arg min
w

 1

ϕ
κ(v(w),0) +

∑
(x,u,t,s)∈D

(
u− q−1b(x)>Jφt(x)wt

)2 (4.34)

Where ϕ is a positive constant indicating the desired tradeoff for fitting a parsimo-

nious performance function and fitting the decision-making agent’s actions well, 0

is a vector of all zeroes of the appropriate dimensionality, and we use v(w) as a
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shorthand notation to indicate the value function given by the basis weights w. In

contrast to Method 1 which requires solving two sequential linear regression prob-

lems and therefore always converges to a unique solution, the objective function in

Equation 4.34 involves solving a single quadratic regression problem. To see this

note that the function κ(·, ·) contains the term 1
2
∇xvt(x)>b(x)q−1b(x)>∇xvt(x) =

1
2
w>t Jφ,t(x)b(x)q−1b(x)>Jφ,t(x)>wt which is quadratic in wt.

Since the determination of the value function weights is no longer a linear

least-squares problem, we no longer have the nice property that the variance of the

basis weights can be computed in closed form. A possible workaround is to compute

the Hessian of the objective function given in Equation 4.34 and apply LaPlace’s

approximation [9] to obtain a Gaussian estimate of the posterior distribution over

the basis weights.

4.9 Goal-based imitation for Mechanical and Mo-

tor Systems

For a large class of biological and mechanical systems known as “natural

systems” (defined as ones where the kinetic energy of the system is 1
2
θ̇>m(θ)θ̇)

the state of the system can be represented as x =

[
θ

θ̇

]
where θ and θ̇ denote the

position and velocity respectively of the system in some generalized coordinate

system. For instance, θ might represent the joint angles of a robot and θ̇ might

represent the angular velocities of these joint angles. For the rest of this section

we will refer to θ and θ̇ as “position” and “velocity” for concreteness. For such

systems, the dynamics take the following form [23, 35]:

f(θ, θ̇)Ut + c(θt, θ̇t)dBt = m(θt)θ̈t + C(θt, θ̇t)θ̇t + τ(θ) (4.35)

Where C is the position and velocity-dependent coriolis-matrix, m is the position-

dependent inertial matrix, τ are generalized-forces exerted due to gravity, and f

specifies a transformation from the control signals of the agent into generalized

torques about the joint angles. Since the inertial matrix m is always positive
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definite, we can rewrite the equations of motion given by Equation 4.35 in the

standard form of the systems we have studied so far in this chapter:

d

[
θt

θ̇t

]
=

 θ̇t

−m−1(θt)
(
C(θt, θ̇t)θ̇t + τ(θ)

)+

[
0

m−1(θt)f(θ, θ̇)

]
Ut

 dt

+

[
0

m−1(θ)c(θt, θ̇t)

]
dBt (4.36)

Of particular importance is that many of the components of the dynamics in the

previous equation do not depend on the particulars of the natural system. For in-

stance, for any natural system we require that the top-half of the passive dynamics

is always θ̇. Also, we require that the elements of the top half of the noise and

controlled dynamics matrices are all zero. This observation will become critical

when we examine the problem of goal-based imitation for natural systems.

Since the system the demonstrator is assumed to be interacting with is a

control-affine diffusion (with dynamics given by Equation 4.36), we can compute

a closed-form expression for the demonstrator’s performance function in terms of

its value function. The performance rate will be a function of θ, θ̇, and time, and

therefore we assume that the demonstrator’s performance is dictated by the posi-

tions and velocities of its joint angles. Next, since we model the control problem

faced by the imitator as a control-affine diffusion with an unknown performance

function, we can now substitute the closed-form expression for the demonstrator’s

performance function into the imitator’s HJB equation. This substitution encodes

the assumption that the imitator and the demonstrator derive the same perfor-

mance value for being in a particular state configuration. The result of making

this substitution will be a new PDE, very similar to the original HJB, except

that it will include the value function of the demonstrator and will not contain an

explicit performance function. Next, we use collocation methods to compute an

approximate solution to the resulting PDE. Recall that collocation methods (see

Chapter 2) are an approach for generating approximate solutions to PDEs, and

that solving the HJB for a control-affine diffusion yields the optimal control law

given in Equation 4.1.

Before proceeding with the derivation we define some additional notation.
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In order to differentiate between the functions in Equation 4.36 that specify the

dynamics of the imitator and the demonstrator, we use a tick symbol, ′, to identify

those that correspond to the imitator. For instance, we use vt to refer to the value

function of the demonstrator at time t. Similarly, we use v′t to refer to the value

function of the imitator at time t.

We begin by plugging b(x) =

[
0

m−1(θ)f(θt, θ̇t)

]
into Equation 4.5 to deter-

mine a likelihood function for the demonstrator’s value function. Next, we apply

the procedures in this chapter to compute a MAP estimate of the demonstrator’s

value function given the observed behavior. Next, we substitute the expression for

the demonstrator’s performance function, given by Equation 4.2, into Equation 4.2

to generate a new PDE.

−∇tv
′
t(x) = ρt(x)− 1

τ
v′t(x) +

1

2
∇xv

′
t(x)>b′(x)q′

−1
b′(x)>∇xv

′
t(x)

+a′(x)>∇xv
′
t(x) +

1

2
trace(c′(x)c′(x)>∇2

x,xv
′
t(x))

ρt(x) =
1

τ
vt(x)−∇tvt(x)− 1

2
∇xvt(x)>b(x)q−1b(x)>∇xvt(x)

−a(x)>∇xvt(x)− 1

2
trace

(
c(x)c(x)>∇2

x,xvt(x)
)

Unfortunately, the new PDE contains the term ∇θvt(x) (through the dependence

on the performance rate ρt(x)) which cannot be recovered using the MAP estimate

for fitting the demonstrator’s value function (see Section 4.7 for an example of why

this gradient direction cannot be determined). Next, we show how to simplify the

PDE to remove all of these unidentifiable terms.

Instead of identifying an optimal value function for the imitator from scratch,

we can define without loss of generality the imitator’s value function as: v′t(x) =

vt(x) + gt(x) where vt is the estimate of the demonstrator’s value function given

by Equation 4.5 and gt is a supplementary value function that we will fit in order

to solve the PDE. Next, we write the PDE in terms of our new construction for
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the imitator’s value function:

−∇tvt(x) − ∇tg(x, t) = ρt(x)− 1

τ
(vt(x) + gt(x))

+
1

2
(∇xvt(x) +∇xgt(t))

> b′(x)q′
−1
b′(x)> (∇xvt(x) +∇xgt(x))

+a′(x)> (∇xvt(x) +∇xgt(x))

+
1

2
trace(c′(x)c′(x)>

(
∇2
x,xvt(x) +∇2

x,xgt(x))
)

(4.37)

ρt(x) =
1

τ
vt(x)−∇tvt(x)− 1

2
∇xvt(x)>b(x)q−1b(x)>∇xvt(x)

−a(x)>∇xvt(x)

−1

2
trace

(
c(x)c(x)>∇2

x,xvt(x)
)

(4.38)

Now, we make two algebraic simplifications. Note, that these simplifications

do not imply that we are making any additional assumptions. First, we can cancel

out the temporal derivative and 1
τ

term of the value function of the demonstrator,

vt, from both sides of Equation 4.37 (after substituting in the form of ρt(x)).

Second, we notice that:

a(x)>∇xvt(x) = θ̇>∇θvt(x)−
(
m−1(θt)

(
C(θt, θ̇t)θ̇t + τ(θ)

))>
∇θ̇vt(x)

a′(x)>∇xvt(x) = θ̇>∇θvt(x)−
(
m′−1(θt)

(
C ′(θt, θ̇t)θ̇t + τ ′(θ)

))>
∇θ̇vt(x)

Therefore, the term θ̇>∇θvt(x) appears on both sides of Equation 4.37 and can

be cancelled. After these modifications we arrive at the simplified form of Equa-

tion 4.37:
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−∇tgt(x) = −1

2
∇θ̇vt(x)>m−1(θt)f(θ, θ̇)q−1

(
m−1(θt)f(θ, θ̇)

)>
∇θ̇vt(x)

+
(
m−1(θt)

(
C(θt, θ̇t)θ̇t + τ(θ)

))>
∇θ̇vt(x)

−1

2
trace

(
m−1(θ)c(θt, θ̇t)c(θt, θ̇t)

>m−1(θ)>∇2
θ̇,θ̇
vt(x)

)
+

1

τ
gt(x)

+
1

2
(∇θ̇vt(x) +∇θ̇gt(t))

>m′−1(θt)f
′(θ, θ̇)q′

−1

×
(
m′−1(θt)f

′(θ, θ̇)
)>

(∇θ̇vt(x) +∇θ̇gt(x))

−
(
m′−1(θt)

(
C ′(θt, θ̇t)θ̇t + τ ′(θ)

))>
∇θ̇vt(x) + a′(x)>∇xgt(x)

+
1

2
trace

(
m′−1(θ)c′(θt, θ̇t)c

′(θt, θ̇t)
>m′−1(θ)>

×∇2
θ̇,θ̇

(vt(x) + gt(x))

)
(4.39)

The key property of this PDE is that nowhere in the equation does the

gradient of the demonstrator’s value function with respect to θ appear. To complete

our model of goal-based imitation, we use the collocation methods described in

Chapter 2 to find a solution to the PDE in Equation 4.39. By construction, the

value function v′t(x) will yield a policy that will be approximately optimal for the

same goal as the demonstrator. This result holds even though we can’t say exactly

what that goal is.

4.9.1 Accounting for Uncertainty in Goal-Based Imitation

In general the imitator will not be able to determine the gradient of the

demonstrator’s value function with respect to θ̇ exactly. However, the procedure

for fitting the value function to the demonstrator’s behavior outlined in this chapter

provides a Gaussian posterior distribution over these components of the gradient.

One can modify the collocation approach for solving PDEs based on solving a series

of linear regressions backwards in time (see Chapter 2) from minimizing the squared

difference between the left- and right-hand sides of the PDE to instead minimizing

the expected squared difference between the left- and right-hand sides. The result

of this is a linear regression problem at each step where the dependent variables
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have different variances depending on the variance of ∇θ̇vt(x). The specific values

of the variance induced by these components of the gradient could be computed

using the same techniques as in Section 4.4, however, we leave the derivation of a

formula for the variance of these values as future work. Regression with different

degrees of noise in the response variables is known as a heteroscedastic regression.

The standard method for solving this problem is to perform a weighted least-

squares fit to the expected value of the response variables where the weights of

each instance are proportional to the reciprocal of the variance of the response

variable.

4.10 Inverse Optimal Control of Stochastic Dif-

ferential Games

The work presented so far can easily be extended to a game-theoretic setting

by considering a class of games known as stochastic differential games. A stochas-

tic differential game is a generalization of the continuous time stochastic control

problem considered in this chapter. The crucial difference is that in stochastic

differential games, multiple decision-making agents specify a control signal at each

point in time that has an effect on a shared system state vector. Here, we consider

2-player stochastic differential games, however, the extension to more players is

trivial. Consider the following dynamical system:

dXt =
(
a(Xt) + b1(Xt)U

1
t + b2(Xt)U

2
t

)
dt+ c(Xt)dBt (4.40)

In comparison to Equation 2.12, there are now two control signals specified at each

point in time, U1
t and U2

t , corresponding to the action choices of agent 1 and agent

2 respectively. We assume that agent 1 is attempting to maximize its expected

performance which is of the form: r1t (x, u) = ρ1t (x)− 1
2
u>q1u. Similarly, we assume

that agent 2 is attempting to maximize its expected performance which is of the

form: r2t (x, u) = ρ2t (x)− 1
2
u>q2u. Where, as in the single-agent case, q1 and q2 are

known real symmetric positive-definite-matrices.

Suppose we observe trajectories of two agents interacting with this dynam-
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ical system. The input di ∈ D consisting of tuples of state, action, time, and

trajectory identifier will now be augmented to contain the action of the second

decision-making agent. Our goal will be to recover the state performance rates

ρ1t (·) and ρ2t (·) from D. Our method for doing this in the single agent case was

to assume that the demonstrator was selecting its action choices optimally with

respect to its performance function. In the game-theoretic setting we assume that

the agents are at a Nash Equilibrium [45].

A Nash-Equilibrium is achieved when each agent cannot improve its out-

come by modifying its strategy given that it knows the other agent’s strategy

and that the other agent’s strategy is fixed. In the case of Stochastic Differential

Games, the strategy space consists of all time-varying polices which map states

into actions. The Nash Equilibrium condition states that in order for two players’

policies to be in a Nash equilibrium, each policy must be optimal assuming the

other player’s policy is known and held fixed.

Our approach follows the same logic as in the single-agent case, we attempt

to infer two value functions, one for player 1 and one for player 2, that optimally

match each of the player’s actions. Fortunately, assuming that the other player’s

policy is known, Equation 4.40 can be rewritten in a particularly convenient form.

For instance, from player 1’s point of view:

dXt =
(
a′t(Xt) + b1(Xt)U

1
t

)
dt+ c(Xt)dBt (4.41)

a′t(Xt) = a(Xt) + b2(Xt)π
2
t (x) (4.42)

Where π2
t (·) is the policy of the second agent. Equation 4.41 is an instance of the

single-agent continuous time stochastic optimal control problem we have considered

earlier in this chapter. From Equation 4.1, we know that given a candidate value

function, v1t , π
1
t (x) = q−11 b1(x)>∇xv

1
t (x). By plugging the value function for player

1 into Equation 4.2 we can recover the performance function for which the observed
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behavior is optimal.

ρ1t (x) =
1

τ
v1t (x)−∇tv

1
t (x)− 1

2
∇xv

1
t (x)>b1(x)q−11 b1(x)>∇xv

1
t (x)

−a(x)>∇xv
1
t (x)

+∇xv
2
t (x)>b2(x)q−12 b2(x)>∇xv

1
t (x)

−1

2
trace

(
c(x)c(x)>∇2

xxv
1
t (x)

)
(4.43)

Using the same procedure as before we can determine a performance function for

player 2 that makes the inferred value function an optimal value function:

ρ2t (x) =
1

τ
v2t (x)−∇tv

2
t (x)− 1

2
∇xv

2
t (x)>b2(x)q−12 b2(x)>∇xv

2
t (x)

−a(x)>∇xv
2
t (x)

+∇xv
1
t (x)>b1(x)q−11 b1(x)>∇xv

2
t (x)

−1

2
trace

(
c(x)c(x)>∇2

xxv
2
t (x)

)
(4.44)

As in the single-agent case, our objective will be to tune these value functions,

v1 and v2, to maximize the fit to each player’s observed action choices. Crucially,

the optimal action choice for a particular value function (e.g. for player 1) is

q−11 b1(x)>∇v1t (x) which does not depend on the value function of the other player.

Therefore, we can solve two separate optimization problems, which are each ordi-

nary least-squares problems, in order to find the optimal basis weights w1 and w2

for the linearly parameterized value functions v1 and v2. However, while the par-

ticular value function inferred for player 1 will not depend on player 2’s behavior,

the estimated performance function will depend on player 2’s behavior through the

term ∇xv
2
t (x)>b2(x)q−12 b2(x)>∇xv

1
t (x) in Equation 4.43.

If we want to enforce prior knowledge about the performance functions of

both agents, we can follow steps similar to those outlined in Section 4.8. The

resulting algorithm involves solving for the value functions of each player in a joint

optimization rather than two independent optimizations as is the case when we

do not enforce prior information. As before, we will pay a computational price for

this change by requiring the solution to a quadratic least-squares rather than a

linear least-squares problem.
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4.11 Features for Value Function Representation

In some rare cases, we will know in advance a suitable set of basis functions

for representing the demonstrator’s value function. For instance, if the dynamical

system is linear (i.e. a(·) is a linear function and b(·) and c(·) are constant functions)

and we assume the state-performance rate, ρt, is quadratic, then we can guarantee

that the demonstrator’s value function is quadratic in the state variables. In cases

such as this, we can parameterize the value function using a vector containing

all products and co-products of the state-variables. In other words we use basis

functions φi(x) = xjxk,∀j, k ≤ n. To allow for performance functions that are

quadratic plus a linear term, we also add additional basis functions linear in the

state-variables.

However, in most cases, we will not know ahead of time what an appropri-

ate functional form of the value function will be. Next, we propose a very general

parameterization that will allow for the representation of a rich set of value func-

tions. Our approach is to use a collection of local value function approximators

that are averaged using state-sensitive weightings defined by a kernel function:

vt(x) = αt(x)>wtφ(x) (4.45)

Where φ(x) is a vector of basis functions designed to accurately represent the

value function in a local region. Here, wt is a matrix rather than a vector and

specifies the weighting of the basis features for each of the local approximators.

Finally, αt(x) specifies the relative weighting of each of the local approximators for

determining the value function. Specifically, we define αt using the locations of a

set of vectors µt,1 . . . µt,nk and a kernel function, k. The ith element of αt(x) takes

the following form:

(αt(x))i =
k(x, µt,i, σ)∑nk
j=1 k(x, µt,j, σ)

(4.46)

k(x, µ, σ) = exp{−(x− µ)′σ(x− µ)} (4.47)

Where σ is a fixed, symmetric positive-definite matrix. Since σ is fixed, the value

function is fully specified by the vectors µt,1:nk and by the weight vectors wt,1:nk .

The positions of the vectors µt,1:nk can be set before optimizing the value function
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(preserving the linear nature of the optimization) using the k-means algorithm on

the observed states from Dt. In our experience, a particularly good choice for φ

is to have it contain all products and co-products of the state dimensions plus the

terms linear in each of the state dimensions. In this way, the value function is

approximated by a mixture of many local quadratic value functions.

4.12 Potential Applications to the Study and

Synthesis of Social Interactions

Later, we present an example of using our techniques for analyzing social

interaction. However, while this application is promising, we have barely scratched

the surface of the potential for applying these new techniques to the computational

study of social interaction. In the preceding section, we discussed how the problem

of two agents interacting could be conceived of as a stochastic differential game

where the agents have a shared state vector (which might encode different physical

characteristics of each agent as well as some shared features of the environment)

and each agent specifies a control vector at each point in time that, in turn, in-

fluences the state differential. This formulation is sufficiently general to handle a

wide variety of social interaction settings. Here are a few possibilities.

Socially Intelligent Machines: The ability to infer the intentions behind

human movements (e.g. facial expressions, gaze shifts, or gestures) is likely to

provide critical information for either a computer program or a robot to successfully

interact with humans. The techniques provided here allow for the determination

of a human’s intention. For example, imagine two factory workers collaborating

to assemble a product. In order for the workers to collaborate optimally, each has

to have a good idea of the other’s intentions. This knowledge is important both

so that the workers can sequence relevant subtasks optimally, as well as allowing

the workers to help their partner when he encounters particularly difficult parts of

the assembly process. The ability to instantiate abilities such as these in a robot,

is likely to be crucial for allowing these robots to flexibly interact with human

workers.
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Computational Analysis of Conversational Dynamics: There is a growing

body of work [48] on using the dynamics of conversations or business meetings

to detect high-level attributes about the participants (e.g. dominance or influ-

ence). By formulating the turn-taking behavior of these situations as a continuous

stochastic differential equation where the state variables might include participant

eye gaze, body posture, voice volume, etc. we could uncover the intentions of each

participant using the techniques in this chapter. Perhaps, the language of inten-

tions will provide a better framework for operationalizing concepts such as influence

and dominance than relying on hand labeling of these high-level attributes as has

been done in the past. Additionally, this analysis might suggest a computational

model of how humans infer these attributes in others.

Computational Analysis of coregulation in mother-infant interaction: The

developmental psychologist Alan Fogel put forth a theory that mother-infant in-

teractions are marked by coregulation in which the actions of one partner (e.g. an

infant smile) influence the responses of the other partner (e.g. a mother vocaliza-

tion) [21]. These influences can either be within the same modality (e.g. facial

expression to facial expression) or cross-modal (e.g. touch to vocalization). In

order to understand interactions such as these at a computational-level we might

formulate the unfolding of these behaviors over time as a continuous dynamical

system (where the state variables could encode smile intensities, or volume of vo-

calizations, etc.). The techniques presented in this dissertation could then be used

to uncover the intentions that best predict both mother and infant behavior.

Analysis of facial expressions during dialogues: determining at a

computational-level what underlies various behaviors that we see in one-on-one

conversations would be a fruitful application area for our techniques. For instance,

one might build a model of how individual facial movements (e.g. eyebrow move-

ments, gaze shifts, or mouth movements) of a listener affect a speaker and vice-

versa. One might then infer whether a particular pattern of movements in either

the listener or the speaker was optimal for eliciting particular facial responses in

the other.
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4.13 Connection to Discrete Inverse Optimal

Control

The key feature that makes our approach to Inverse Optimal Control in the

continuous case computationally tractable is that the minimization of the right-

hand side of the HJB equation with respect to the control signal can be performed

analytically. For traditional discrete-time, discrete-state, and discrete-action con-

trol problems, this is not the case. The analogous equation to the HJB equation

for the discrete control problem is the Bellman optimality equation. Suppose we

have a state space X and an action space A, then the Bellman optimality equation

gives us a set of sufficient conditions for a value function to be the optimal value

function v? : X → R:

v?(x) = min
a∈A

(
r(x, a) + γ

∑
x∈X

p(x′|x, a)v?(x′)

)
,∀x ∈ X (4.48)

Where, as defined in Chapter 2, γ is a discount factor specifying the preference for

long-term vs. short-term performance. Here, we provide a model for inferring the

performance function of an agent for a discrete-state, discrete-action, discrete-time

MDP. In contrast to the continuous case, the maximization in Equation 4.48 cannot

be carried out analytically thus we cannot obtain a maximization-free expression

similar to Equation 4.2 that relates the value function and system dynamics to the

performance function. More importantly, we cannot obtain a maximization-free

objective function for fitting the value function to the demonstrator’s behavior.

Next, we show that if we assume a particular form for the cost on the action, then

we can overcome both of these limitations.

4.13.1 Problem Formulation

We are given a state space, X , an action space, A, a discount factor γ ∈
[0, 1), and a transition dynamics model Tx,x′,a = p(x′|x, a). We will also write Tx,a ∈
Rn to denote the vector of transition probabilities from state x after executing

action a. Additionally we are given access to a set of demonstration state-action
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pairs, D, that we assume were selected optimally with respect to an unknown

performance function.

Our first goal is to determine the performance function that explains the

demonstrator’s behavior as optimal. We assume an infinite-horizon discounted

optimal control formulation with known discount factor γ ∈ [0, 1). That is we

assume that the goal of the demonstrator is to compute a controller, π∗ such that:

π∗ = arg max
π

E

[
∞∑
t=0

γtr(Xt, Ut)

∣∣∣∣ π
]

(4.49)

However, instead of allowing the policy π to be a mapping from states to actions

as is typical for discrete-state MDPs (see Chapter 2), we assume that the agent’s

policy specifies a mapping from each state to a discrete probability distribution

over the action space A. That is we write the action Ut as Ut,1 . . . Ut,m with the

constraint that
∑m

i=1 Ut,i = 1 and 0 ≤ Ut,i ≤ 1 ∀ i ∈ {1 . . .m}. We can think of

this action as an internal plan that the demonstrator formulates, however, only

one of these actions is actually carried out in the environment with the probabil-

ities of each possible action given by the demonstrator’s internal action plan. As

the observer, we only get access to the particular action in A that was actually

executed. Additionally we make the assumption that the performance function of

the demonstrator has the form:

r(Xt, Ut) = ρ(Xt) +
1

λ
H[Ut] (4.50)

Where H[Ut] is the entropy of the discrete probability distribution defined by Ut,

and λ is a constant that controls the relative cost/benefit tradeoff for the agent

choosing action plans that are entropic vs. choosing ones that will steer it toward

desirable states. One can think of this action cost as an assumption that being

deterministic requires effort. Optionally, a cost for executing a particular action

in A can be added to the previous performance function without complicating the

derivations that follow. However, for brevity we do not treat the case with action

costs on the elements of A (choosing only to enforce costs on the probability

distributions over the elements of A given by Ut).

H[Ut] = −
m∑
i=1

Ut,i logUt,i (4.51)
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The function ρ is an arbitrary state desirability function that we will attempt to

infer from examples of the demonstrator’s behavior. As in the continuous case,

our strategy for accomplishing this task will be to infer the demonstrator’s value

function. Next, we will develop an expression relating the demonstrator’s value

function to the demonstrator’s state desirability function.

4.13.2 Approach

From the Bellman optimality equation we know that for a candidate value

function to be an optimal value function it has to satisfy the following equation

for all states, x. We use v(x) to refer to the value given to state x, and we write v

to refer to the value function of all states expressed as a vector in R|X |.

v(x) = max
u

r(x, u) + γ

|A|∑
i=1

uiT
>
x,ai

v

 (4.52)

= ρ(x) + max
u

1

λ
H[u] + γ

|A|∑
i=1

uiT
>
x,ai

v

 (4.53)

Where the summation is over all possible actions in A where we weight

their expected future performance by the probability of selection under the discrete

probability distribution u. The optimal u is given by the following expression (see

proof in Appendix A.1):

u∗i (x) =
eλγT

>
x,ai

v∑|A|
j=1 e

λγT>x,aj v
(4.54)

Now we can substitute u? into Equation 4.53 to obtain an expression for



88

the performance function from the value function, v.

v(x) = ρ(x)− 1

λ

|A|∑
i=1

eλγT
>
x,ai

v∑|A|
j=1 e

λγT>x,aj v
log

eλγT
>
x,ai

v∑|A|
j=1 e

λγT>x,aj v

+γ

|A|∑
i=1

eλγT
>
x,ai

v∑|A|
j=1 e

λγT>x,aj v
T>x,aiv (4.55)

= ρ(x) +
1∑|A|

i=1 e
λγT>x,aiv

×
|A|∑
i=1

eλγT
>
x,ai

v

(
γT>x,aiv −

1

λ
log

eλγT
>
x,ai

v∑|A|
j=1 e

λγT>x,aj v

)

= ρ(x) +
1∑|A|

i=1 e
λγT>x,aiv

×
|A|∑
i=1

eλγT
>
x,ai

v

(
−1

λ
log

1∑|A|
j=1 e

λγT>x,aj v

)

= ρ(x) +
1∑|A|

i=1 e
λγT>x,aiv

×
|A|∑
i=1

eλγT
>
x,ai

v

1

λ
log

|A|∑
j=1

e
λγT>x,aj v


= ρ(x) +

1
λ

log
∑|A|

j=1 e
λγT>x,aj v∑|A|

i=1 e
λγT>x,aiv

×
|A|∑
i=1

eλγT
>
x,ai

v

= ρ(x) +
1

λ
log

|A|∑
j=1

e
λγT>x,aj v (4.56)

After rearranging terms we can write the performance function as:

ρ(x) = v(x)− 1

λ
log

|A|∑
j=1

e
λγT>x,aj v (4.57)

4.13.3 Determining the Performance Function from Be-

havior

Next, we develop a method for computing a maximum likelihood estimate

of v from the state-action pairs, D, collected from the demonstrator. Since we

have a formula to compute the probability of an observed action choice, a, at a
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particular state, x, given a candidate value function, v, if we assume that the

probability of each action choice is conditionally independent of all others given

the current state and value function we can write the log-likelihood of the given

state-action pairs using the product rule as:

log p(x1:|D|, a1:|D||v) = log

(
p(x1|v)p(a1|x1, v)

Π
|D|
i=2

(
p(xi|x1:i−1, a1:i−1, v)

p(ai|x1:i, a1:i−1, v)

))
(4.58)

= log

(
p(x1)p(a1|x1, v)

Π
|D|
i=2

(
p(xi|xi−1, ai−1)p(ai|xi, v)

))
(4.59)

Since we are interested in maximizing this log-likelihood as a function of v we can

ignore any terms that do not depend on v. Thus:

arg max
v

log p(x1:|D|, a1:|D||v) = arg max
v

|D|∑
i=1

log p(ai|xi, v) (4.60)

log p(ai|xi, v) = log
eλγT

>
xi,ai

v∑|A|
j=1 e

λγT>xi,aj v
(4.61)

= λγT>xi,aiv − log

|A|∑
j=1

e
λγT>xi,aj v (4.62)

This objective function is concave in the optimization variables, v, and thus

standard optimization methods will converge to a global optimum. The argument

that the objective function is concave is as follows. Since the sum of many concave

functions is also concave, if we show that log p(a|x, v) is concave ∀a ∈ A, x ∈ X
then we can conclude that the right side of Equation 4.60 is concave. log p(a|x, v)

is a linear function minus log-sum-exp composed with a linear function. Log-sum-

exp is a well-known convex function [10]. Any convex function composed with an

affine function is also convex. Therefore log p(a|x, v) is a concave function (since
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all linear functions are concave) minus a convex function which is guaranteed to

be concave.

Now that we have shown that the log-likelihood function is concave, the

procedure for inferring an estimate of the performance function given sequences of

behavior from a demonstrator is to:

1. Infer a maximum likelihood estimate of the demonstrator’s value function.

2. Plug the maximum likelihood estimate of the value function computed in

step 1 into Equation 4.57 in order to obtain the performance value of each

state.

Optionally, one can enforce prior information about the performance function by

adding a term that penalizes performance functions that are improbable a priori,

however, this modification may or may not preserve the concavity of the resulting

optimization problem.

Future work includes considering the case where the dynamical model of

the demonstrator is not known exactly. This modification will lead to an error-in-

variables regression model that might be able to be approached using techniques

similar to an error-in-variables model proposed for logistic regression [13] (given

the similarity of the objective function for multinomial logistic regression and that

proposed here). In a similar spirit, it may be possible to extend techniques from

Bayesian Logistic Regression to determine an approximation of the posterior dis-

tribution over value functions [26].

4.13.4 Relation to Previous Work on Discrete Inverse Op-

timal Control

The work presented in this section is related to two threads in the in-

verse optimal control literature: Inverse Optimal Control for Linearly Solvable

Markov Decision Processes (LMDPs) and Bayesian Inverse Reinforcement Learn-

ing. In [18], Dvijotham and Todorov propose a method for inverse reinforcement

for LMDPs. In a similar spirit to what we do here, in the LMDP setting the action
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is changed to be a probability distribution. However, in contrast to the probability

distribution over actions used here, the action in an LMDP is over the next state.

However, while this formulation is somewhat unnatural for many MDPs, the au-

thors do provide a procedure for embedding a traditional Markov Decision process

as an LMDP. The idea is that once this embedding is done, then the inverse opti-

mal control algorithm for LMDPs can be applied to infer the performance function

for the original problem. The principle drawback of this method is that the em-

bedding requires that the number of actions available at each state to be equal

to the number of reachable successor states. Our method does not require this

assumption. Additionally, in [18] a system of linear equations must be solved to

yield the embedded LMDP. Since the objective function for matching the demon-

strator’s actions is defined on the resulting LMDP the nature of how the objective

function on the LMDP relates to the original control problem is obfuscated.

Bayesian Inverse Reinforcement Learning, originally proposed in [47] and

extended in [15], uses a very similar likelihood function for the demonstrator’s

actions to the one we use in our work. In [47] they model the probability of

an action given the current state, performance function, and the optimal value

function as:

p(a|xi, r, v?r) =
eγλT

>
x,av

?
r∑|A|

j=1 e
γλT>x,aj v

?
r

(4.63)

Where v?r ∈ R|A| is the optimal value function over the performance function r

expressed as a vector. Of crucial importance is that the optimal value function

v?r is computed without taking into account the model of action noise dictated by

Equation 4.63. Thus, the model states that the demonstrator computes an optimal

policy for the control problem assuming that it can behave deterministically. Then

when the agent actually executes its plan it sometimes makes mistakes where the

rate of mistakes have to do with the relative value of choosing suboptimal actions

compared to the optimal action. However, this begs the question if the agent knew

that its actions were not perfectly reliable (i.e. subject to noise), could it possibly

construct a better policy? Our approach makes explicit the connection between

the likelihood of the observed action choices and the underlying control problem
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without introducing a post-hoc likelihood function. Another side benefit of our

approach compared to [47] and [15] is that, for these approaches as one searches

through the space of performance functions periodically one needs to compute the

optimal value function v?r via a potentially expensive dynamic programming step

that our approach does not require.

4.14 Experiment: Application to Motion Cap-

ture Analysis of Mother-Infant Interaction

The purpose of this experiment is to apply our methods for intention in-

ference to the study of a database of mother-infant motion capture that we have

collected. Our technique for Inverse Optimal Control is perfectly suited to this

task as it provides a natural framework for a computational-level analysis of infant

motor movements. In general, almost any interaction between an infant and either

social or nonsocial objects could be formulated within this framework, however, to

get started with this endeavor we perform a computational-level analysis of infant

head movements in response to movements of the toy by the infant’s mother.

There are several important reasons for pursuing a computational analysis

of infant head movements. The first is an engineering one. The ability to deter-

mine quickly which object a person is tracking could be used to provide crucial

information to an assistive robot. The second is a scientific one. The methods

developed in this chapter provide a formalization of Daniel Dennett’s intentional

stance for infant motor movements. Therefore, our techniques provide a prin-

cipled and flexible method for ascribing intentional language such as “tracking”,

“attempting”, or “reaching” to infants. Having a clear and rigorous notion of what

we mean by these terms is likely to organize and expand our taxonomy of infant

motor development. A particularly nice benefit of defining intentional terms within

a rigorous framework is that we can automatically determine behavioral markers

for the same intention in novel situations by simply modifying our description of

the underlying control problem. We do not, as is done with conventional methods,

need to determine by hand what a particular intentional behavior “ought” to look
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Figure 4.1: An example of a typical interaction from our experiment. Here mother
is told to get her infant to reach for the orange cube.

like in a novel situation.

Here, we provide a framework for answering quantitative questions regard-

ing infant object tracking in naturalistic interactions. Specifically, we show that our

technique segments out portions of the mother-infant motion capture sessions that

correspond to infant object tracking. Secondly, we show how our model can be used

to provide a way to look at the developmental trends of infant head movements.

Here, we study the interaction between mother and infant as a system consisting

of infant’s head direction and the angle between the infant’s head direction and a

toy that mother is holding. We leave the study of the higher dimensional move-

ments that can be determined using our motion capture dataset as future work

(e.g. movement of infant arms and legs).

4.14.1 Methods

We describe the salient details of the dataset used for our analysis, as well as

the particular details of how we applied our framework for inverse optimal control.
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Experimental Dataset

Upon arriving at the lab, the infant was dressed in a custom-made motion

capture suit consisting of 48 motion markers distributed around the infant’s arms,

legs, and torso. Mother and infant were brought into a playroom that had been

instrumented with 10 PhaseSpace visible light motion capture camera pairs. The

infant was strapped to a supportive seat that allowed unrestrained movement of

her legs and arms while providing stability around the trunk (see Figure 4.1).

Mother was fitted with a head mounted camera to record video from her point of

view. In addition, mother was given gloves with motion capture markers as well

as a head band instrumented with motion markers to allow for accurate tracking

of her head position. The experiment alternated portions of interaction between

mother and her infant either with or without the mediation of objects (which were

also fitted with motion capture markers).

The sequence of interactions in the experiment was as follows:

1. Three rounds of interleaved 1-minute face-to-face interactions and 1 minute

interaction with each of three toys (small cube, large cube, mobile) (total: 6

minutes).

2. Experimenter presents a toy at a set of prescribed locations in an attempt

to elicit reaching.

3. Step 1 of the interaction is repeated (i.e. three rounds of interleaved 1-

minute face-to-face interactions and 1 minute interaction with each of three

toys) (total: 6 minutes).

The dataset consists of 4 subjects seen longitudinally for varying numbers

of sessions. Specifically, the number of sessions we have for the four subjects are

9, 15, 5, and 9.

4.14.2 Intentional Model of Infant Head Movements

Here we describe how we formulate the movement of infant’s head as well

as the toy as a continuous state, continuous action, and continuous time control
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problem. Once this formalization has been accomplished, then we can apply our

methods for inverse optimal control described earlier in the chapter to infer the

infant’s intentions. Our motivation for the particular characterization of the state

space is to answer the question of whether or not at any particular point in time

during the session the infant has the intention of tracking a toy held by mother.

State Space

The state consists of the angle, α, between the infant’s head direction and

the vector from the infant’s head to the toy in the plane of the floor, as well as the

angle, θ, between the infant’s head direction and a vector normal to the infant’s

chair (see Figure 4.2).

System Dynamics

We model the system as obeying a stochastic differential equation of the

form of Equation 2.12. The system dynamics are:

d


α

α̇

θ

θ̇

 =


α̇

0

θ̇

0

 dt+


0

−1

0

1

Utdt+


0 0

cα −cθ
0 0

0 cθ

 dBt (4.64)

Where cα and cθ are noise scaling factors associated with random move-

ments of the toy and head respectively. As before, we use the dot notation above

a variable to indicate its temporal derivative. The control signal at time t, Ut,

represents the angular acceleration of the infant’s head in the plane of the floor.

Determining the Infant’s Intentions

In order to apply our framework for intention inference, we assume that the

performance rate consists of a quadratic penalty on the control signal, Ut, added

to a time-varying arbitrary function of the state. Additionally, we do not use

temporal discounting of the performance rate, therefore we set τ =∞. Finally, we
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Figure 4.2: A schematic of the control problem faced by the infant. The diagram
is drawn from the point of view of looking down at the interaction from the ceiling
of the room. At each point in time the infant specifies an angular acceleration
for his head direction. The angle of the toy and the x-axis is assumed to evolve
according to a Brownian motion process.

set the control penalty matrix q to the value 1. Our goal will be to infer the time-

varying state-based component of the performance rate from the head movements

of the infant. Plugging our system dynamics into Equation 4.2 we arrive at the

following expression for the infant’s performance rate:

ρt(x) = −∇tvt(x)− α̇∇αvt(x)− θ̇∇θvt(x)

−1

2
(∇α̇vt(x)−∇θ̇vt(x))2

−1

2
c2θ

(
∇2
θ̇,θ̇
vt(x)− 2∇2

α̇,θ̇
vt(x) +∇2

α̇,α̇vt(x)
)
− 1

2
c2α∇2

α̇,α̇vt(x)

With optimal action given by:

u?t (x) = ∇θ̇v(x)−∇α̇v(x)

We parameterize the value function at time t as a quadratic function of the

state variables. To allow for parameters of the quadratic function to vary through

time (and thus for the state-dependent component of the performance rate to vary

through time), we use multiple quadratic functions each spaced 4 seconds apart
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over the time interval [0, T ]. Each of these quadratic functions is allowed different

basis weights. The value at a time point between two of the quadratics is given by

linearly interpolating the value functions from the two temporally-closest quadratic

functions.

We encode the prior knowledge that the parameter weights of the value

function should vary smoothly over time. Also, we use Method 1 described in

Section 4.8 to enforce a prior that the infant’s performance function is largely

invariant to the products of two distinct state-variables (e.g. θθ̇), but rather is

mostly dependent upon the square of a single state variable (e.g. θ2).

By applying our method to a state-action trajectory of infant and object

movements, we are able to determine a distribution over the infant’s time-varying

performance rate function. In order to convert this posterior distribution into

the intentional language of “the infant has the intention of tracking the toy” we

compute the probability that a performance function sampled from the posterior

distribution over performance functions has the property that the infant assigns a

positive value to tracking the toy. We estimate this probability by sampling from

the Gaussian posterior distribution over value functions.

4.14.3 Results

First, we apply our Inverse Optimal Control algorithm to three sessions.

The purpose of this experiment was to see whether our model segments meaningful

portions of the session that correspond to our intuitions of what infant object

tracking “should” look like. Specifically, we analyze the portion of the session

where mother and infant are interacting with a large orange cube. This choice

was made because this object was the largest and had the most robust tracking

performance. To apply our model, we consider the start of the time horizon for the

control problem as when the orange cube is handed to mother, and we consider

the terminal time to be when mother hands the toy back to the experiment.

Shown in Figure 4.3 is a sequence of video frames taken from the point in

the session where the model assigns the highest probability to the infant having

the intention to track the toy. Figure 4.4 is the same as Figure 4.3 except that the
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images correspond to the point in the session that the model assigns the lowest

probability to the infant having the intention to track the toy. Interestingly, during

this portion of the session the infant looks up at mother for a portion of the interval.

Two additional pairs of image sequences (one with high evidence of tracking and

one with low evidence) for two additional mother-infant sessions are shown in

Figures 4.5-4.6 and Figures 4.7-4.8.

Next, we examine how the intentions of infant head movements change over

developmental time. We analyze the head movements of one infant, rob020, across

six motion-capture sessions spaced over a period of 11 weeks. As before, for each

session we apply our inverse optimal control model to estimate the probability that

the infant intends to track the toy as a function of time. Shown in Figure 4.9 are

histograms (over 4 second intervals) showing the probability our model assigns to

the infant having the intention of tracking the toy. As the infant gets older there

are more periods where the model is certain that the infant intends to track the

toy. In order to summarize the developmental trend of toy tracking, we computed

the mean proportion of time during play with the toy that the infant intends to

toy. The results of this analysis are shown in Figure 4.10. The proportion of time

the infant intends to track the toy generally increases with the infant’s age. We

can interpret this increasing trend either as indicating that either the infant spends

more time trying to track the toy as he gets older, or that the infant has become

better at executing optimal tracking movements (thus providing clearer evidence

of his intention to our model).

4.14.4 Discussion of Motion Capture Results

While existing work tends to focus on the development of tracking perfor-

mance (rather than intention) and to do so in constrained conditions, here, the

model is able to determine the developmental trajectory of how much the infant

intends to track the toy. In addition, our model is sophisticated enough to be ap-

plied in naturalistic situations, such as the data collected here, where the mother

is free to manipulate the object in an arbitrary fashion.

Our model gives us a rather simple recipe for determining if the infant’s
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t = 0s t = 1s

t = 2s t = 3s

t = 4s

Figure 4.3: Shown are five frames spaced at intervals of 1 second from the por-
tion of the session where the model assigns the highest probability to the infant
intending to track the toy.
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t = 0s t = 1s

t = 2s t = 3s

t = 4s

Figure 4.4: Shown are five frames spaced at intervals of 1 second from the portion
of the session where the model assigns the lowest probability to the infant intending
to track the toy.
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t = 0s t = 1s

t = 2s t = 3s

t = 4s

Figure 4.5: Shown are five frames spaced at intervals of 1 second from the por-
tion of the session where the model assigns the highest probability to the infant
intending to track the toy.
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t = 0s t = 1s

t = 2s t = 3s

t = 4s

Figure 4.6: Shown are five frames spaced at intervals of 1 second from the portion
of the session where the model assigns the lowest probability to the infant intending
to track the toy.
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t = 0s t = 1s

t = 2s t = 3s

t = 4s

Figure 4.7: Shown are five frames spaced at intervals of 1 second from the por-
tion of the session where the model assigns the highest probability to the infant
intending to track the toy.
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t = 0s t = 1s

t = 2s t = 3s

t = 4s

Figure 4.8: Shown are five frames spaced at intervals of 1 second from the portion
of the session where the model assigns the lowest probability to the infant intending
to track the toy.
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Figure 4.9: Histograms showing the proportion of time that the infant rob020
intends to track the toy during 6 different motion capture sessions.
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Figure 4.10: The expected proportion of time the infant rob020 has the inten-
tion of tracking the toy over 6 different sessions. The plot shows an increasing
proportion of time spent tracking the toy over developmental time.

intention is to track the toy. One might wonder whether we could have specified a

heuristic model that would have been just as effective. For instance, a reasonable

heuristic would be to look at the mean value of α over some window of time. The

intuition being that if α remains low then the infant is probably tracking the toy.

However, this heuristic approach will not select segments that correspond to our

intuition of tracking. For instance, if the infant were staring straight ahead and

the mother was holding the toy in front of the infant without moving it, then this

heuristic would designate this is an interval where the infant is tracking the toy

(since α would remain near 0 the entire time). However, this scenario does not

agree with our intuition about what it means to track a toy. The model presented

here is able to answer this question from first-principles by clearly articulating the

assumptions behind our inference of the infant’s intention. Additionally, there are

several potential extensions (see Future Work) that can be easily handled within

our framework, but would make designing a sensible heuristic even more difficult.



107

Applications to Assistive Robotics

In addition to application in the study of infant motor movements, our

system can be applied to give robots new perceptual abilities by allowing them to

ascribe intentional language to their human interactive partners. A key strength

of our inverse optimal control algorithm is its computational performance. Since

our technique is based on linear regression, with a sparse design matrix, a 90-

second segment of motion capture can be analyzed in about 200 milliseconds. Due

to the computational efficiency of this approach, we were able to create a real-

time version of our model for inferring the intentions of head movements of a user

interacting with a laptop. The approach uses a computer-vision based system

called CERT [33] to automatically infer the user’s head pose from each video

frame recorded using the laptop’s built-in webcam. As a proof of concept, we have

our system show two agents moving back and forth across the laptop’s screen.

From the pattern of user head movements, as determined by CERT, we can very

efficiently and very quickly hone in on which of the two agents the user is tracking.

This software implementation shows that our system is computational efficient

and effective even when given the noisy sensory data generated by computer-vision

based analysis of human faces. These initial results suggest that our approach may

be a promising technique for allowing an assistive robot to determine the intention

behind a human’s head movements in real-time.

Future Work

While the model presented detects head tracking successfully, there are

many ways in which the model could be extended to make more precise inferences

about the intentions of infant head movements. Firstly, the assumption that the

motion of the toy is solely driven by Brownian motion is not realistic. In our data,

the toy is typically held by mother (although sometimes by the infant herself). If

mother is holding the toy, the movement of the toy may be far from random, in

fact mother may have the intention to help the infant track the toy. If the infant

infers that by rotating her head toward the toy, mother is likely to begin to move

the toy toward her, then the optimal solution to the tracking problem changes.
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This can be accommodated by our model through a modification of the passive

dynamics of the control problem.

A shortcoming of the current model is that it assumes that the infant can

sense the location of the toy at all points in time. In reality the infant’s estimate

of the position of the toy will be driven by the direction of the infant’s gaze, which

in turn provides the infant with noisy sensory information indicating the location

of the toy. In this setting we can view the motion of the head as well as of the

eyes as important clues to the infant’s underlying intention. Reformulating the

model presented in this chapter to take this into account would involve using the

partially observable inverse optimal control model.

Finally, we will jointly analyze multiple types of infant movement (including

limb movements as well as facial expressions). Anecdotally, it appears that in our

data the physical and social contexts of motor development are tightly coupled.

The result is that behavioral categories that are natural from an adult perspective

may be artificial from an infant’s perspective. For example, when a caregiver

is present, making facial expressions, vocalizing, or moving the legs, may be as

effective to make contact with or track an interesting object as simply moving the

head or reaching with the arms. Having a principled computational method for

cataloguing and understanding developmental milestones in terms of not only the

morphology of the infant’s behavior, but how different behavioral morphologies

may represent new strategies or techniques to accomplish the same intention, may

have a significant impact on our understanding of the computational processes

driving infant social and motor development.

4.15 Conclusion

We have presented a method for inverse optimal control and imitation in

continuous state, action, and time. The strength of our approach lies in the fact

that a distribution of the value function of the demonstrator can be computed

efficiently and in closed-form. The existence of the exact distribution over value

functions allows the handling of many forms of uncertainty not considered in other
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approaches. We also show that our system is applicable to many control settings

including ones with partial observability, game-theoretic interactions, and discrete

state spaces.

We concluded with an experiment that indicates that our approach is well-

suited for rapidly uncovering the intentions behind human head movements. Our

work with infant motion capture demonstrates that our technique is an effective

formalization of Dennett’s intentional stance. That is, for continuous systems, we

can, in a principled and automatic fashion, ascribe intentions to natural agents.

The generality of our formulation allows for both understanding and synthesizing

behavior in many different domains.
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A.1 Optimal Action With Entropy Penalty
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Where to get from the first to the second line we subtracted a constant (it is a

constant since u is constrained to add up to 1). The KL-divergence is minimized

when the two distributions u and λ are equal. Therefore the maximizer of the

original expression is u?i = e
γλT>x,aiv∑
j e
γλT>x,aj v

.
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Table A.1: This table includes a list of commonly used symbols (i.e. that occur
regularly throughout the thesis. In general, symbols are defined as when they are
first referenced, however, this listing is helpful for symbols that are used much later
in the text from where they were originally defined.

Symbol Meaning

n number of state dimensions

m number of control dimensions

k number of Brownian noise dimensions

d number of basis functions for value the approximator

X state space for a control problem

Xt ∈ Rn system state at time t

Ut ∈ Rm control signal at time t

T terminal time for a finite-horizon control problem

A action space for both the discrete and control problem

vt : X × [0, T ]→ R value function at time t

v ∈ R|X | discrete-state value function expressed as a vector

Q ∈ X ×A → R discrete state-action value function

w basis weights for the value approximators

wt basis weights for the value approximator at time t

v : X → R discrete-state value function

a : Rn → Rn passive-dynamics

b : Rn → Rn×m controlled dynamics gain function

c : Rn → Rn×k Brownian motion gain matrix

γ ∈ [0, 1) discount factor for discrete-time MDP

τ ∈ Z+ discount factor for continuous MDP

ρt : Rn → R state-reward rate at time t

ρ : X → R state reward (discrete case)

ψT : Rn → R terminal reward function

q ∈ Rm×m quadratic control-cost matrix

r : X → R discrete-state reward function

r : Rn × Rm → R continuous MDP reward function
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